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A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or
Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds
numbers due to the growth of background noise and 3D effects like vortex stretching.
This three-dimensionality changes macroscopic features, such as the perturbation
growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D pertur-
bation with small-scale, 3D fluctuations is modeled using the hydrodynamics code
Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar
to the experiments of Motl et al. [“Experimental validation of a Richtmyer-Meshkov
scaling law over large density ratio and shock strength ranges,” Phys. Fluids 21(12),
126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D
effects. We report on the structure, growth, and mixing of the post-shocked interface
in 2D and 3D. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4966683]

I. INTRODUCTION

The interface between gases of two densities will become unstable when accelerated continu-
ously in the direction of the density gradient, resulting in the Rayleigh-Taylor instability (RTI),1,2 or
accelerated impulsively in any direction, resulting in the Richtmyer-Meshkov instability (RMI).3,4

These instabilities are governed by the vorticity transport equation,5

Dω

Dt
= (ω · ∇)U − ω (∇ · U) + ν∇2ω +

1
ρ2 (∇ρ × ∇p) , (1)

where the non-zero cross product of the density and pressure gradients in the final term will lead
to the production of vorticity. The first term on the right of Eq. (1) is the vortex stretching term,
where a velocity gradient in the direction of the vorticity vector can lead to an amplification of
vorticity and a reduction of its length scale. Eventually this effect can allow the third term on the
right of Eq. (1) to dissipate the energy through viscous effects. Vortex stretching is fundamentally
a three-dimensional effect and is responsible for the cascade of length scales in turbulent flows.6

Therefore dissipation and scalar mixing can be expected to increase in three-dimensional flows
when compared with two-dimensional flows. Often the RMI and RTI are studied by imposing a
well-defined, 2D, single mode perturbation. In experiments, higher mode, 3D perturbations are
unavoidable and can eventually grow to break the two-dimensional nature of the interface.

In past numerical studies of shock tube experiments, three-dimensional features were neces-
sary to match experimental results. The gas curtain shock tube experiments7 use a downward
flowing layer of high-density SF6 surrounded by air within a horizontal shock tube to study the
shock-induced mixing. Previous work by Gowardhan and Grinstein8 simulated the LANL gas cur-
tain experiments and found it necessary to add 3D noise to match post-reshock behavior. Schilling
and Latini9 used a similar approach for the Vetter and Sturtevant experiments10 and observed that
the late-time behavior was sensitive to the magnitude of the small-scale perturbations. Cabot11
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compared 2D vs 3D Rayleigh-Taylor with the same initial condition as the Cabot and Cook 3D
direct numerical simulation (DNS),12 while Olson and Greenough have done a similar 2D vs 3D
comparison for the RMI.13 Both studies find that 3D effects reduce the large-scale extent of the
mixing layer, but 3D flows develop more molecular mixing.

In some regimes, such as inertial confinement fusion and astrophysics, experiments are often
modeled in two dimensions due to limited computational resources. In some cases,14 the simula-
tions show clear nonlinearity; therefore, it is important to know at what point the 2D simulations
diverge from 3D reality. Some high energy density physics (HEDP) experiments relevant to inertial
confinement fusion (ICF)15 are initialized with 2D perturbations for simplicity, but at what point do
3D effects dominate?

This study takes a different approach from the previous computational studies. In this case, the
problem is dominated by a two-dimensional flow and we investigate when and how 3D features
break that two-dimensionality. The basis for this study is the shock tube experiments of Motl
et al.16 These experiments used a nominally two-dimensional perturbation to study the Richtmyer-
Meshkov instability but observed turbulent-like features at high Atwood and Mach numbers. The
problem setup and a description of the code used for this study are given in Section II. Section III
describes the differences in interface growth and mixing due to small-scale and 3D effects. Finally,
concluding remarks are given in Section IV.

II. SIMULATION DETAILS

The single mode interface used here is based on experimental work16 which sets up a helium-
over-SF6 interface (Atwood number = 0.95) with an η = 2.72 cm amplitude and λ = 16.7 cm
wavelength perturbation and accelerated it with a M = 1.95 shock wave. Experimental images were
obtained by seeding a smoke tracer into the dense SF6 gas and utilizing planar Mie scattering
for imaging a 2D slice of the flow. In the current work, the interface characteristics and Mach
number of the experiment are used and three dimensional effects are induced by adding small-scale
perturbations using a Gaussian band of energy in wavenumber space described by

E(k) ∝ e
−(k−kpeak)2

2σ2 , (2)

where k is the magnitude of a wavevector in Fourier space, kpeak is the peak wavenumber, σ is the
bandwidth, and

A2
RMS =

 ∞

0
E(k) dk . (3)

Modes 3 through 2/3 times the Nyquist cutoff (nx/2) are included in the creation of the small-scale
perturbations, and the perturbation spectrum is zeroed outside of this range. RMS amplitude of
ARMS
η
= 0.03 is used in both 2D and 3D and an additional case is included where these perturbations

are reduced further, to ARMS
η
= 0.003. While the experiment certainly had small-scale 3D perturba-

tions, their magnitude and scale are unknown (as is the sensitivity of simulations to these values)
and the small-scale perturbations used in this study are purely postulated to investigate their effect.
This initial condition is shown in Fig. 1, which shows (a) the single mode perturbation, (b) the

FIG. 1. Initial condition creation for the 3D case. (a) Single mode interface; (b) small-scale perturbations; (c) initial condition
given by the superposition of (a) and (b).
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TABLE I. Properties of each simulation. SM indicates a single-mode case, while MM indicates a multi-mode simulation.

Case Mesh-size [x(×y)×z] Pert. [kpeak, σ, Arms
η ] Single-mode pert. [λ,η,δ]

SM 256 × 1024 N/A 16.7 cm, 2.72 cm, 0.5143 cm

MM_2D 256 × 1024 8 1
cm , 4 1

cm , 0.03 16.7 cm, 2.72 cm, 0.5143 cm

MM_3D 256 × 256 × 1024 8 1
cm , 4 1

cm , 0.03 16.7 cm, 2.72 cm, 0.5143 cm

MM_3D_small 256 × 256 × 1024 8 1
cm , 4 1

cm , 0.003 16.7 cm, 2.72 cm, 0.5143 cm

small scale ARMS
η
= 0.03 perturbations, and (c) the final interface. To simulate diffusion, the interface

contains a hyperbolic tangent cross-sectional density profile with a thickness δ of 0.51 cm, chosen
to match the diffusion thickness seen in the experiment. The domain is 16.7 cm wide (and deep in
3D) and 66.8 cm tall. The simulation is initialized such that the post-shock interface is stationary,
and the initial location of the interface is chosen such that the full height of the domain is filled
by the spike/bubble structure at the latest time for the single-mode-only case. Periodic boundary
conditions are used in the spanwise directions and outflow conditions are used in the flow direction.
These cases are called SM, MM_2D, MM_3D, and MM_3D_small and are detailed in Table I.

The four simulations chosen for the present work each exemplify a different aspect of dimen-
sionality and interface geometry; together they illustrate the importance of 3D effects on a 2D-
dominated flow. The SM simulation serves as a base case for the evolution of the dominant 2D
wavenumber only. When compared to SM, the MM_2D case allows for the effects of small-scale
perturbations in 2D to be explored. MM_3D brings the simulations into three dimensions, allowing
for effects such as vortex stretching to impact the evolution of the RMI. Finally, MM_3D_small
details the sensitivity of simulations to the small-scale 3D perturbations and visually best matches
experimental images of the spike/bubble structure (see Fig. 2).

These simulations used the Miranda code, a high-order hydrodynamics code developed at
Lawrence Livermore National Laboratory.17 This large eddy simulation code achieves high spatial
accuracy using a 10th-order compact differencing scheme and is able to achieve high temporal accu-
racy by using a 4th-order accurate Runge-Kutta scheme. Energy is transported to sub-grid scales

FIG. 2. Structure evolution shown at τ = 0, τ = 3.62, τ = 6.86, and τ = 9.56 for (a) single mode only (SM), (b) 2D single
mode with Arms

η = 0.03 multimode perturbations (MM_2D), (c) 3D single mode with Arms
η = 0.03 multimode perturbations

(MM_3D), (d) 3D single mode with Arms
η = 0.003 multimode perturbations (MM_3D_small), and (e) experiment.16
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through the use of artificial-fluid properties, such as hyper-viscosity and hyper-diffusivity. Miranda
has proven useful in simulating a large variety of turbulent flows and mixing, including previous
RTI and RMI studies.12,18

III. RESULTS

A. Structure

Discussed here are the resulting structure and growth rate of the interface following acceler-
ation by the shock wave, as well as mixing measurements for each case. As used previously in a
number of RMI studies,16,19–21 both the interface amplitude and time will be nondimensionalized
using Richtmyer’s impulsive growth rate. The nondimensional amplitude is found by offsetting the
measured height by the post-shock initial amplitude and then scaling by the single-mode wave
number,

h̄ = k(h − h′0), (4)

where k = 2π
λ

(with λ = 16.7 cm) is the dominant wavenumber, h is the measured height (at
the 50% volume fraction level) for each time, and h′0 is the post-shock initial amplitude. Here,
h′0 = h0

(
1 − |V0|

Mc

)
, where h0 is the initial amplitude, V0 is the interface velocity jump, M is the Mach

number, and c is the speed of sound in the light fluid. The nondimensional time τ is given by

τ = k ḣ0t, (5)

where t is the dimensional time and ḣ0 = kh′0A′V0 is the initial growth rate.
Figures 2(a)–2(d) show slices of volume fraction for each of the cases in Table I at τ = 0, 3.62,

6.86, and 9.56 after shock acceleration of the interface. This mimics what is seen experimentally
using Mie scattering, shown in Fig. 2(e). In these images the dense SF6 is black, the light He is
white, and the shock direction is downward. All of these cases show the characteristic behavior of
high Atwood number interface growth, where the dense upward-going spike becomes very narrow
and the downward traveling bubble becomes very broad.

The evolution of the 2D single mode interface with no small-scale perturbations is shown in
(a). When small-scale perturbations are added in 2D, as shown in (b), there is a clear break in
the symmetry of the spike structure, and long, drawn-out, black and white filament structures are
observed. When the domain is three-dimensional, shown in (c), the filament structures have broken
into finer scale features and more mixing has occurred, as evident by the presence of more grey area.
Finally, the 3D case with smaller multimode perturbations (case MM_3D_small) is shown in (d).
In this case the spike structure is better preserved, and the mushroom-like structure at the tip of the
spike remains intact but is surrounded by mixed material. The tip of the spike in the MM_3D case is
more torn apart by the small-scale 3D features. The MM_3D_small case is the most visually similar
to the experimental images shown in (e). At the latest time shown here, all cases show the bubble
becoming distorted. This is also observed in the last experimental image.

Figure 3 shows each simulation case much later in time, at τ = 27. In the 2D single mode case,
Fig. 3(a), the spike has broadened, with secondary features spanning the width of the domain. A
second harmonic becomes apparent at late times, with a spike developing at the original bubble
location. At the later times of Fig. 2, the bubble has flattened and then experienced further instabil-
ities from vorticity present in the light gas. By the latest time shown in Fig. 3, this motion on the
bubble interface has caused light gas to be entrained below the interface. The MM_2D, Fig. 3(b),
exhibits a similar vertical extent as the SM case, but the spike has mixed over a wider area without
a coherent spike remaining and less concentrated heavy fluid. The base of the spike also exhibits a
higher harmonic, but it appears shifted by a quarter wavelength. The 3D case, Fig. 3(c), in contrast
to the 2D case, retains the coherent spike structure, although it has reduced in volume fraction
compared to the single mode case. The vertical extent of the spike is reduced compared to the two
2D cases. A small downward-going jet of light material is extending beyond the base of the bubble.
While a similar feature is visible in 2D, its extent is increased in 3D. When the amplitude of the
multimode perturbations are decreased, as in Fig. 3(d), the overall extent approaches that of the 2D
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FIG. 3. Structure evolution shown at final time of τ = 27 for (a) SM case, (b) MM_2D case, (c) MM_3D case, and (d)
MM_3D_small case.

single mode case, but the spike appears broken at several locations, with clumps of little heavy gas
remaining.

In the MM_3D case, a small downward jet of helium protrudes directly below the main spike.
This can be observed in the latest time of Fig. 2(c) and in Fig. 3(c). In all simulations, a downward
plume of material appears below the spike due the spanwise contraction of the spike (visible in
images of the velocity field, shown in Fig. 4), but only in the MM_3D case is helium present in this
plume. This plume is visible in the later-time experimental images of Fig. 2(e), but the experiments
do not reveal if there is any helium contained in this plume. The presence of He in this plume in
the simulation of case MM_3D appears to originate from the 3D effects, described in Fig. 5. This
figure shows the interface viewed from below by showing the volume of 0.05 ≤ ξ ≤ 0.95, where ξ

FIG. 4. Evolution of streamwise velocity showing the development of the upward-traveling interface spike, and the
downward plume directly below the spike. The times are (a) τ = 0.54, (b) τ = 1.62, (c) τ = 3.62, and (d) τ = 6.86. The
red dashed line shows the 50% volume fraction contour.
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FIG. 5. Evolution of the interface in the MM_3D case. The material between 0.05≤ ξ ≤0.95 is shown, viewed from the
heavy material side. The multimode perturbations stretch in the x-direction and inject material downwards by the latest time.
The times are (a) τ = 0.54, (b) τ = 1.08, (c) τ = 1.62, (d) τ = 4.32, and (e) τ = 10.8.

is the volume fraction. The isotropically distributed 3D perturbations that are noticeable in (a) begin
stretching in the x-direction as the spike contracts spanwise and grows in amplitude. The vortices
pointed in the x-direction amplify in intensity during this three-dimensional process. By the time of
(d) the bubble region of the interface contains narrow, downward-moving features that collide in the
center and send a jet further downward, seen in (e).

B. Interface growth

While small-scale perturbations and three-dimensional effects visually change the interface,
their effect on the interface height is small at early times. Fig. 6 shows the spike-to-bubble height
for each simulation compared to experimental values, as well as growth rates for each case. In
these figures, a red line denotes a 2D simulation and black lines show 3D cases. The solid lines
represent cases with the same multimode amplitude (MM_2D and MM_3D cases). The red dotted
line shows the SM case and the black dotted line shows the MM_3D_small case. For the 3D cases,
64 slices were used at various depths to find an average height value, modeling the data that might
be obtained experimentally through an ensemble average. Figure 6(a) shows the development of
the spike height, h, in time through measurements at the ξ = 0.5 contour level. At times earlier
than τ ≈ 2, spike height is similar not only for all computational cases but also for experimentally
determined values of h. While simulation appears to slightly over-predict h from τ ≈ 2 to τ ≈ 6, the
MM_3D case agrees well with the experiment following τ ≈ 6, at which time this case and the other
simulation begin to diverge with a deceleration in spike growth (see Fig. 6(b)). This transition to
nonlinear growth is later followed by the MM_2D case at τ ≈ 16, while the single mode and small
ARMS cases continue on at roughly 8 cm/ms. Previous work19 found 2D simulations to over-predict

FIG. 6. Spike-to-bubble extent as defined by the ξ = 0.5 contour level, (a) height and (b) growth rate in time. Open circles in
(a) show experimental values from Motl et al.16
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the experimental interface height, which also seems to be occurring here in all but the case with
larger multimode perturbations, although the difference found here is small.

Growth rates show (Fig. 6(b)) that, compared to the single mode only case, there is a small
increase in growth at early times from adding small-scale perturbations in 2D and 3D, but this
reduces to a negligible difference in the MM_3D_small case. Following this initial peak in growth
rates, all cases show a relatively constant decay in growth until τ ≈ 6. At this time, the growth
rate for the MM_3D case begins to decay at a higher rate than the others. Later, a similar decay is
seen for the MM_2D case beginning at τ ≈ 14. The MM_3D_small case only has a slight reduc-
tion in growth rate compared to the SM case. The growth rate from the MM_3D case actually
becomes negative after τ ≈ 22. This is because the increased molecular mixing in 3D reduces the
concentration of spike material to where the extent of the ξ = 0.5 contour begins decreasing.

C. Mixing

The integral mixing width takes into account the volume fraction over the entire domain to
obtain a width and does not suffer from contour thresholds like the definition for h. This integral is
readably available from the simulations but difficult to measure in experiments; therefore, only the
simulation values are shown here. The integral mixing width22 is described by

W =
 ∞

−∞
ξ(1 − ξ) dz, (6)

where the average volume fraction is given by

ξ =




1
Lx

 Lx

0
ξ dx for 2d

1
LxLy

 Ly

0

 Lx

0
ξ dx dy for 3d

, (7)

where Lx is the width of the domain and Ly is the depth of the domain.
The integral mixing width is nondimensionalized using the dominant wavenumber, k, and

shown in Fig. 7. There appears to be three epochs occurring. Before τ = 3.8, the mixing width is
growing linearly and with general agreement among all cases. From τ = 3.8 to τ = 9.2, W does
not increase in the SM case. From the previous figure, we know that the height of the interface is
still growing, so it appears that the increase in height is offset by the average volume fraction, ξ
becoming closer to 0 or 1 (depending on the definition of ξ). In the other cases, mixing caused by
small-scale perturbations is pushing ξ towards 0.5 and thereby increasing W . During this second
epoch, the increased mixing produced by 3D effects causes the 2D and 3D cases with the same
ARMS to separate (solid lines). In the final epoch, the spike breaks apart and increases the amount of

FIG. 7. Integral mixing width, Eq. (6), for the four simulation cases.
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FIG. 8. Mixedness ratio, Eq. (8), for the four simulation cases.

mixing and the mixing width. Three-dimensional effects are observed during this final period as the
MM_2D case grows faster than the MM_3D case. Additionally, the MM_3D_small case is growing
faster than the SM case at later times.

The relative amount of molecular mixing can be computed through the mixedness ratio,

Θ = W−1
 ∞

−∞
ξ(1 − ξ) dz. (8)

Mixedness is a measure of the amount of mixing occurring within the mixing width, with 0 being
unmixed and 1 being completely mixed. The mixedness for each case is shown in Fig. 8. While
Θ may not be converged for a very-high Reynolds number flow, comparing simulations with the
same resolution (and therefore the same numerical Reynolds number) illustrates how the dynamics
change from 2D to 3D and with varied amounts of 3D perturbations. Additionally, work by Olson
and Greenough13 shows Θ to approach a converged value at the resolution used in this study. In
all cases, the mixedness decreases immediately following the passage of the shock wave due to the
compression of the interface and early linear growth. After this initial decrease in Θ, the mixed-
ness increases monotonically for all simulations. This increase happens slowly for the SM and
MM_3D_small cases and rapidly for the MM_2D and MM_3D cases. Regardless of a slow or rapid
initial increase in mixedness, Fig. 8 clearly shows that the most important factor in determining a
simulation’s mixedness at late-time is the dimension in which the simulation is run. By the latest
time, an obvious separation is seen in the value of mixedness for 2D and 3D simulations despite
delayed mixing in the small ARMS and single mode cases. In the present study, two-dimensional
cases are converging toward a mixedness value that is only about 75% that of the three-dimensional
cases.

IV. CONCLUSIONS

This study has shown that 3D effects are important in completely understanding the devel-
opment of the RMI, even when the flow is dominated by 2D features. The 3D simulation with
small-scale multimode perturbations of ARMS/η = 0.003 shows good visual agreement with the
experimental images. At this small level of multimode perturbations, the interface height is not
significantly altered from the single mode case. With larger amplitude multimode perturbations, 2D
and 3D simulations show a divergence in interface height. The integral mixing width depends on
both the dimensionality of the simulation and the presence of small scale perturbations. 3D effects
have also been found to have a different effect on spike/bubble height and integral mixing width.
Although perturbations and three-dimensionality work to reduce h at late times, we find that W is
largest for these cases when compared with the single-mode-only case.

The amount of mixing occurring directly after shock-acceleration is strongly dependent on
small-scale features and is increased by 3D effects. At the latest-time however, results show
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that the value of mixedness appears to only depend on the dimension in which the simulation
was computed, with 2D and 3D results converging to different values. This implies that a two-
dimensional domain will not be able to accurately represent all aspects of the RMI since, at a
minimum, the level of mixing will be under-predicted.
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