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Abstract

The development of the Richtmyer-Meshkov instability (RMI) is experimentally investigated

in a vertical shock tube using a broadband initial condition imposed on an interface between

a helium-acetone mixture and argon (Atwood number A ≈ 0.7). The shear layer used in the

present work serves as a statistically repeatable, broadband initial condition to the RMI, and

is accelerated by either an M = 1.6 or M = 2.2 planar shock wave. The development of

the ensuing mixing layer is investigated using simultaneous planar laser-induced fluorescence

(PLIF) and particle image velocimetry (PIV). PLIF images are processed to reveal the light-gas

mole fraction, while PIV particle image pairs yield corresponding full-field velocity results.

Field structure and distribution is explored through probability density functions (PDFs), and

a decomposition is performed on concentration and velocity results to obtain a mean flow

field and define fluctuations. Simultaneous concentration and velocity field measurements

allow – for the first time in this regime – experimentally determined turbulence quantities

such as Reynolds stresses, turbulent mass-flux velocities, and turbulent kinetic energy. We

show that by the latest times the mixing layer has passed the turbulent threshold, and there

is evidence of turbulent mixing occuring sooner for the higher Mach number case. Interface

measurements show nonlinear growth with a power-law fit to the thickness data, and integral

measurements of mixing layer thickness are proportional to threshold measurements. Spectral

analysis demonstrates the emergence of an inertial range with a slope ∼ k−5/3 when considering

both density and velocity effects in planar turbulent kinetic energy (TKE) measurements.
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Chapter 1

Introduction

It has been said that “turbulence is probably the most important and yet least understood

problem in classical physics” [56]; a deeper understanding of this phenomenon, along with a

better comprehension of its development, is vital to the forward progress of turbulence’s many

and far-reaching fields of applicability. The present work will focus on the development of

concentration and velocity in a turbulent mixing layer caused by the impulsive acceleration of

an interface between two fluids of different density. The production, evolution, and ultimate

decay of this turbulent zone is governed by the Richtmyer-Meshkov instability (RMI), which

plays out over a large span of both length and time scales, and appears in a large variety of

applications.

First theorized by Richtmyer in 1960 [69], and later validated by the experiments of

Meshkov [48, 49], the RMI has puzzled scientists for years, prompting many decades of re-

search into the subject. Early experimental work used wire mesh and membranes to seperate

the test gases prior to shock acceleration, and information about the mixing region was limited

to integrated line-of-sight measurements of the mixing zone. As researchers realized that the

mesh and membrane greatly impacted the flow, methods of creating membraneless interfaces

were developed, and integrated measurements eventually gave way to planar laser measure-

ments.

The work detailed in this report seeks to add to the ongoing progress of this ever-evolving
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field by making direct, simultaneous planar measurements of several variables important in

shock accelerated inhomogeneous flows. The RMI is experimentally investigated at several

stages in its development in the Wisconsin Shock Tube Laboratory (WiSTL) to provide insight

into the concentration and velocity fields that result from impulsively accelerating the broad-

band interface between a light and heavy gas. This report begins with background into the

physics of the RMI, motivation for its study, and previous work in Chapter 2. Chapter 3 de-

scribes the current experiment, including information about the WiSTL facility, the initial con-

dition, and the experimental configuration used to obtain information about the flow. Chapter

4 discusses the processing steps used to obtain concentration measurements from PLIF data,

velocity data from PIV particle image pairs, matching of the two fields, and a decomposition

of the flow into mean and fluctuating components. Results and a discussion of their signif-

icance are presented in Chater 5, and a summary of important findings and conclusions are

given in Chapter 6.
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Chapter 2

Background

2.1 The Richtmyer-Meshkov Instability

The Richtmyer-Meshkov instability (RMI) [69, 48] occurs when a shock wave passes through

the interface between two fluids of different density. Vorticity is deposited during shock ac-

celeration of the interface through the misalignment of pressure and density gradients, and

this vorticity drives the growth of perturbations, ultimately leading to enhanced mixing of the

fluids at late times. This instability involves several fundamental compressible fluid dynamic

concepts, including shock dynamics, vorticity deposition, interface deformation, and, at late

times, the growth of secondary instabilities that lead to turbulent mixing. In this chapter, the

origin of the instability is viewed through the vorticity transport equation in section 2.1.1, the

growth of perturbations is considered in section 2.1.2, and the resultant turbulent mixing is

explored in section 2.1.3. Motivation for studying the RMI is given in section 2.2, and an

overview of important previous research is provided in section 2.3.

2.1.1 Vorticity Deposition

The genesis, development, and decay of the Richtmyer-Meshkov instability is governed by

the vorticity transport equation,
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Dω
Dt

= (ω ·∇) u − ω (∇ · u) + ν∇2ω +
1
ρ2

(∇ρ × ∇p) , (2.1)

where ρ is the density, p is the pressure, ν is the viscosity, u ≡ (u, v,w) is the velocity vector

and ω ≡ ∇ × u is the vorticity. The last term on the right-hand side is called the baroclinic

production term, and leads to a production of vorticity when |∇p × ∇ρ| > 0. The first term on

the right hand side is the vortex stretching term; it represents the enhancement of vorticity by

stretching and is only present in three-dimensional flows. Vortex stretching is the mechanism

by which turbulent energy is transferred to smaller scales. The second term on the right hand

side of Eq. (2.1) is the expansion term. In an expanding flow, ∇ · u > 0, resulting in a decrease

in the magnitude of vorticity, while if the fluid is under compression, ∇ · u < 0, and vorticity

will increase. Finally, the third term on the right hand side of the equation is the diffusion

term; this term describes the effects of viscous diffusion on the vorticity distribution.

Since the interaction of the shock wave with the interface occurs at much shorter time

scales than the evolution of the instability, the baroclinic production term can be separated

from the rest of Eq. (2.1) [80] to find,

∂ω

∂t
≈

1
ρ2∇ρ × ∇p, (2.2)

where the pressure gradient can be determined through the momentum equation

∂ρu
∂t

+ ∇ · (ρuu) = −∇ · (pδ) + ∇ · τ, (2.3)

where τ is the viscous stress tensor and δ is the unit tensor. See Fig. 1 for axis orientation. By

neglecting the viscous and nonlinear terms in Eq. (2.3) and assuming that the shock remains

planar, the pressure gradient becomes:

∂p
∂x
≈ 0 , (2.4)
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∂p
∂y
≈ 0 , (2.5)

∂p
∂z
≈ −

∂ρw
∂t

, (2.6)

where the shock normal and the interface normal directions are aligned with the z-axis. By

inserting these values into Eq. (2.2) and taking the post-shock interface velocity to be V0, then

one can integrate over the impulse to get

ωx ≈
V0

ρ

∂ρ

∂y
, (2.7)

ωy ≈ −
V0

ρ

∂ρ

∂x
, (2.8)

ωz ≈ 0. (2.9)

If the interface is 2D, then ωx = 0 and the vorticity deposition can be approximated using only

the the density field and the 1D post-shock interface velocity.

While previous studies have relied heavily on the above analysis in order to obtain vorticity

deposition measurements from concentration fields [81, 85], the work outlined in this report

will not require the numerous assumptions made in order to obtain vorticity measurements

in this way. Instead, direct measurements of vorticity are made by capturing the velocity

field concurrently with concentration measurements. The particle image velocimetry (PIV)

method used in the current work only captures velocities perpendicular to the line-of-sight of

the camera, and so the velocity component in the third direction remains unknown. Using the

two measured components of velocity, the out-of-plane vorticity can be obtained simply by

taking the curl of the velocity field, ω ≡ ∇ × u.
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(a) (b) (c)

Figure 1: Schematic showing the development of the RMI. Daggers (†) indicate a gas has
been shocked, while double daggers (‡) represent twice-shocked gas (by shock and reshock)
and darker shading indicates higher density.

2.1.2 Perturbation Growth

Vorticity deposition following the impulsive acceleration will cause the growth of any pur-

turbations present at the interface. A visual representation of the RMI is shown in Fig. 1,

which depicts the perturbation and incoming shock wave in (a), the reflected and transmit-

ted shock wave in (b), and the development of spike and bubble structures due to the growth

and roll-up of the perturbations caused by the instability in (c). The parameters of interest

include the density, ρ, pressure, p, speed of sound, c, ratio of specific heats, γ, and the velocity

u = ux̂ + vŷ + wẑ. Daggers denote the number of times a region of fluid has been traversed by

a shock wave, while different subscripts indicate a given fluid.

The simplified visualization of the RMI shown in Fig. 1 considers only two-dimensional

perturbations of a single wavelength and amplitude, while the experiments conducted in the
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present work involve a broadband interface, consisting of many three-dimensional perturba-

tions containing a variety of different wavelengths and amplitudes. This will cause the devel-

opment of a turbulent mixing zone at late times, rather than clearly defined spike and bubble

structures; nevertheless, the governing physics of the instability remain similar for both the

multimode and single perturbation cases.

Following passage of the shock wave, the growth of perturbations on the interface is ini-

tially linear in time. As the instability develops and the amplitudes of perturbations become

large, eventually their growth becomes nonlinear, and a turbulent mixing zone will develop

between the two fluids at late times. Taking the peak-to-trough height of a perturbation to be

η, and a peak-to-peak wavelength defined by λ, the wavenumber (k) of a perturbation is given

by,

k =
2π
λ
. (2.10)

Beginning with Taylor’s incompressible, linear theory for the growth of small perturbations

(η << λ) under gravitational acceleration, g,

d2η(t)
dt2 = kgAη(t), (2.11)

where A =
ρ1 − ρ2

ρ1 + ρ2
is the Atwood number, Richtmyer first replaced the constant g by an

impulsive acceleration. Taking g = V0δ(t), where V0 is the post-shock 1D interface velocity,

and integrating Eq. (2.11) with respect to time, Richtmyer found the impulsive growth rate to

be given by,

η̇ = kV0Aη0 (2.12)

where η0 is the perturbation amplitude at t=0. We note that this is unstable for all A; for A > 0

there is immediate growth of the perturbation, while for A < 0 there is first a phase reversal,

followed by growth.
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In addition to the linear growth at early times following impulsive acceleration of small

perturbations, an understanding of growth in the nonlinear regime has been long sought-after.

Though many investigators agree to a power law growth of the mixing zone height, h, as h ∼ tθ,

a number of values for θ have been reported [25, 26, 60, 85, 38]. This power law relationship

describing mixing layer growth can be derived beginning with the kinetic energy per unit area

of the layer,

K =
1
2
ρhV2, (2.13)

where h is the length scale, V is the velocity magnitude, and ρ is the density. The dissipation

of kinetic energy is given by
dK
dt

= −cKV/h, (2.14)

which can also be written,
d
dt

(
hV2

)
= −cV3, (2.15)

where c is a coefficient describing dissipation. Since the width of the mixing layer can be

related to the velocity through
dh
dt

= V , the solution to the above equations is h ∝ tθ, where

θ =
2

3 + c
.

Despite decades of research into the Richtmyer-Meshkov instability there are still many

unanswered questions that remain. Does the turbulent mixing zone growth in the nonlinear

regime truly follow a relation as h ∼ tθ, and if so, what is the value of θ? With such a large

variation in reported values of the growth factor [25, 26, 60, 85, 38], how sensitive is this value

to initial conditions and flow parameters? Current experimental evidence has thus far been

unable to answer these questions, among others, and it is therefore of vital importance that

researchers continue studies in pursuit of a more complete understanding of this phenomenon.
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2.1.3 Turbulent Mixing

The combination of the vorticity imparted by the passing shock wave and perturbation growth

due to the RMI leads to turbulent mixing at late times. This turbulence is diffusive, and en-

hances the transport and mixing of mass, momentum, or a scalar contaminant. Turbulence is

also dissipative, and actively removes kinetic energy and scalar fluctuations through dissipa-

tion and molecular mixing. Three stages have commonly been used to describe the processes

that lead to a state of turbulent mixing [27]: entrainment, stirring, and molecular mixing. Un-

mixed fluid will first become entrained in the mixing region by large-scale, coherent eddies

[12]. The motion of these eddies will stir the fluid, increase the surface area between the dif-

ferent species, and amplify concentration gradients. The sharpening of gradients will enhance

viscous and diffusive forces, leading to turbulent dissipation and molecular mixing.

With turbulence comes an inherent distribution and separation of scales occuring in the

flow, from the large, energy-containing scale to the small, viscous-dominated scale. The idea

of this range of scales and their relationship to one another was first put forward by Richardson

[68] as an energy cascade, where eddies break apart to form smaller eddies. This process

continues until the eddy is sufficiently small and removed through viscous dissipation. If an

eddy has a length scale λ and a velocity scale u(λ), then the time scale in which they break

apart is related to its timescale, τ ≡ λ/u(λ). Breaking apart is equivalent to transferring energy

to the next smallest scale, and the rate of this is related to the kinetic energy of the eddy, u2(λ),

divided by its timescale. If energy is introduced at the largest scales with an eddy size λ0,

and isn’t removed until dissipation at the smallest scale, then an equilibrium develops and the

transfer of energy is the same at each scale and equivalent to the viscous dissipation, ε = u3
0/λ0.

This implies that viscous dissipation is independent of viscosity, ν.
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With this understanding of energy being produced at the large scale and cascading down an

inertial range before being removed through viscous dissipation, one can define two length-

scales that separate these very different regimes. At the larger scale, the Liepmann-Taylor

scale (λL) bounds the isotropic region from the energy-containing range. The Liepmann-

Taylor scale is an upper limit of the inertial range, and is interpreted as the smallest scale

generated by the largest eddies. The smaller lengthscale, the inner viscous scale (λν) bounds

the dissipation region and can be estimated as the scale at which the energy spectrum will

deviate from the power-law behavior indicative of the inertial subrange regime. Mixing is ex-

pected when λL > λν, and in steady-state flows these scales are related to the Reynolds number

through

λL = 5LRe−1/2 (2.16)

λν = 50LRe−3/4, (2.17)

where L is the largest scale of the flow. This implies a transition Reynolds number of Re =

1 − 2 × 104, which has been supported by experimental observations [27, 85].

2.2 Motivation

The broader impacts of the RMI are numerous and wide-ranging. At the largest of time and

length scales, the RMI presents itself during the supernova explosion of a dying star. When

going supernova, a shock wave travels through the many gaseous layers of the star, and the

RMI is reponsible for the appearance of stellar core elements at earlier-than-predicted times

[2]. At the smallest of length and time scales, the RMI manifests itself as a destructive mix-

ing mechanism in inertial confinement fusion (ICF) experiments. When maintaining perfect

spherical symmytery is of the upmost importance, the RMI wreaks havoc as the mechanism
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for mixing of the deuterium-tritium (DT) fuel and the outer ablator layer, causing contam-

ination of the fuel source and inhibiting thermonuclear burn. The RMI and closely related

Rayleigh-Taylor instability (RTI) [64, 73] are thought to be among the most influential causes

preventing ignition in ICF. Though viewed as a hindrance for its contribution to mixing in

the realm of ICF, this enhanced mixing brought on by the RMI is of great favor in certain

aerospace applications. Between the largest and smallest of scales, the RMI plays a crucial

role in scramjet engines [45, 87]. Aiding in the mixing of fuel and oxidizer, the RMI may help

to ensure a faster, more-complete burn of fuel, allowing for the development and optimization

of airbreathing hypersonic vehicles.

Expanding our current knowledge of shock-interface interactions also shows promise for

the advancement of fields including atmospheric sonic boom propagation [22] and shock mit-

igation in foams and bubbly liquids [8, 17, 23]. A more complete understanding of shock-

interface interactions may also help to develop and improve procedures used in the medical

field, such as in the treatment of gallstones and kidney stones, where a shock wave can be used

to break up hardened deposits that occur within various organs [24, 29, 32].

In addition to their possible influence on the numerous fields affected by advancements in

our understanding of the RMI (and shock-accelerated inhomogenous flows, in general), the

experiments carried out in the present work serve another very important role. In recent years,

scientists have supplemented their theortical and experimental knowledge of fluid flow, tur-

buence and mixing with computer simulations [14, 34, 36, 70]. Through the implementation

of high performance computers, modern-day hydrodynamics codes have proven an important

tool for aiding in the expansion of our knowledge of the RMI, and now more than ever, ex-

periments play a crucial role in guiding theory, constraining models, and validating computer

simulations.
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2.3 Previous Work

2.3.1 Theorical Framework

The origins of our understanding of the RMI begin with the Rayleigh-Taylor instability (RTI),

which occurs when a heavy fluid is accelerated into a light one or, alternatively, when the light

fluid supports the heavy fluid in the presence of gravity. The linearized problem of the RTI

was first provided in 1883 by Lord Rayleigh [64], and in 1950 Sir G. I. Taylor used linear

theory to show that the initial growth of an interfacial perturbation is linear until its amplitude

becomes comparable to its wavelength [73]. After an initial transition period, interface pertur-

bations were theorized to evolve to a turbulent mixing region. A theoretical prediction for the

RMI was first provided in 1960 [69] when Richtmyer modified Taylor’s analysis to describe

the evolution of an impulsively-accelerated interface. In particular, he replaced the constant

acceleration term in Taylor’s analysis with an impulsive one (as detailed in Sec. 2.1.2). In this

way, the RMI can be considered the impulsive-acceleration limit of the RTI; however, unlike

the RTI, the interface will be RMI unstable regardless of the direction of acceleration.

The impulsive acceleration required for the development of the RMI is typically provided

by a passing shock wave. After reshock, where the shock wave reflects off the end wall of the

shock tube and interacts again with the interface, further development of existing theortical

models was required to describe the evolution of the reshocked-interface. A theoretical model

of a reshocked interface was proposed by Mikaelian [50], where he showed the mixing layer

grows linearly after reshock and the growth is independent of the pre-shock initial conditions.

According to Mikaelian, the mixing-layer thickness after reshock should fit the form

h = CMA†V0t + h0 , (2.18)
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which extended the RTI growth rate results from [65] and [89] to an impulsive acceleration,

and has been shown to fit many experimental results [43, 65, 75, 88]. According to this model,

the growth rate is ḣ = CMA†V0, which is in contrast to the growth rate of a single-mode initial

condition, which is proportional to the amplitude-to-wavelength ratio.

While this theoretical work often provides foundational knowledge that guides experimen-

tal research, RMI experiments are required to constrain and validate these proposed models

describing the evolution of the instability. A large number of RMI experiments have been

performed over the past decades, and these shock tube studies conducted by others must be

considered for a complete understanding of the importance of the current work in the ongoing

investigation of the RMI. A summary of numerous experimental studies is provided in the

following section, providing insight into the development of new experimental methods and

diagnostics, along with identified challenges and significant results from each group.

2.3.2 Experimental Studies

The first experimental studies providing verification of Richtmyer’s theory were conducted in

1969 by E. E. Meshkov [48]. In these experiments, a sinusoidal nitrocellulose membrane was

used to separate various gas pairs before acceleration by a shock wave, and the interface was

shown to be unstable regardless of whether the shock passed from a heavy gas to a light gas

or from a light gas to a heavy gas. First introduced by Meshkov, the use of a membrane to

separate test gases is a technique that has been commonly used in many subsequent experi-

ments [41, 49, 76]. In the work of Vetter and Sturtevant [75] a wire mesh was used to support

a membrane separating air and SF6, and the interface was accelerated using shock waves with

a strength ranging from M = 1.2 to M = 2.0 that approached the interface from the air side. In
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these experiments, integrated measurements of the mixing layer thickness were obtained using

schlieren visualization, and the presence of the membrane and wire mesh was shown to have a

significant effect on the growth rate of the interface. Additionally, membrane fragments have

been shown to interfere with the flow and can impede certain diagnostic techniques [42, 30].

To address these issues, a number of new methods were developed to eliminate the need

for a membrane and wire mesh, allowing for the creation of a membraneless, continuous

interface. By the 1990’s, experiments had begun using thin, flat, retractable plates in a vertical

shock tube to separate two gases in a light-over-heavy configuration [10, 11]. This technique

generates a relatively thick, diffuse interface, which has been shown to significantly reduce the

growth rate of the mixing layer. Another method of creating a membraneless interface for use

as an initial condition to the RMI was developed by Jones and Jacobs [39] at the University

of Arizona. Using a vertical shock tube, N2 was flowed from the top of the tube while SF6

was flowed from the bottom. At the location where the two gas streams meet, a vacuum slot

in the side of the shock tube was used to evacuate excess gas, establishing a gravitationally

stable stagnation plane. With the stagnation plane fully developed, the shock tube was then

laterally oscillated, imposing a sinusoidal perturbation on the interface. Later experimental

work at the University of Arizona continued this membraneless method of interface creation

using PLIF diagnostics [15, 37] and showed excellent agreement with incompressible linear

stability theory. Of particular interest to the present study are the PIV investigations of the

shock-induced single-mode RMI [4, 52], where PIV results are compared to PLIF and Mie

scattered images of the interface.

The stagnation plane method of generating a membraneless interface described above

paved the way for later work conducted at the University of Wisconsin by Motl et al. [53, 54]

to explore a nominally single mode perturbation created using a technique similar to that used
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at the University of Arizona. Rather than oscilating the entire shock tube to create the per-

turbation, as was done in Arizona, Motl employed the use of two opposing pistons (which

contained slots for evacuating the gas mixture at the stagnation plane) to impose a standing

wave at the Rayleigh-Taylor-stable interface. In Motl’s work, the single mode interface was

not only created over a wide range of Atwood numbers, but also accelerated at several differ-

ent Mach numbers to explore the importance of various flow parameters. This parameter study

lead the way to later work conducted in the Wisconsin Shock Tube Laboratory by Weber et

al. [79, 82]. In these studies, Weber developed a new method of interface creation, allowing

for study of a broadband interface comprised of perturbations of varying wavelength and am-

plitude [81, 85], and the development of the RMI was investigated using PLIF visualization

of the mixing layer at four post shock times. This broadband shear layer initial condition (de-

scribed further in Sec. 3.2) serves as the basis for the investigation of the evolution of velocity

and concentration in the present work.

Experiments conducted at Los Alamos National Laboratory (LANL) have also utilized a

membraneless interface and planar imaging of the RMI [61, 6], although these studies employ

a horizontal shock tube to study the development of a shocked gas curtain. In these studies,

the shock tube is filled with air and a downward flowing curtain of SF6 containing a tracer

is accelerated by a shock wave [7, 5, 57]. In this way, the shock wave passes through not

one, but two interfaces, differentiating this work from that conducted in vertical shock tubes

such as those found at the University of Arizona and the University of Wisconsin. In addition

to studies strictly utilizing horizontal or vertical shock tubes, such as in Wisconsin, Arizona

and LANL, work at Texas A&M University [46] has focused on the effect of the RMI on an

inclined interface. In this facility, a fluid interface can be created at a prescribed angle to the

incident shock by tilting the entire shock tube relative to the vertical direction, with inclination
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angles of 0◦-90◦. Planar laser Mie-scattering is used to obtain measurements of the evolving

interface before and after reshock, and 2D velocity fields are obtained using PIV. While these

studies of the inclined interface RMI are still active today, they are no longer conducted in the

Shock Tube and Advanced Mixing Lab of Texas A&M, as the shock tube has been relocated

to the Georgia Institute of Technology.

2.3.3 Computational Investigations

In recent years, theoretical and experimental studies of the RMI have been supplemented by

computational investigations of the instability. In some of these studies, experimental con-

ditions have been recreated and solved numerically using high-performance computers that

employ several different methods of computation. Perhaps one of the most commonly simu-

lated experiments is that of Vetter and Sturtevant [75]. Cohen et al. [14] used these experi-

ments as a basis for numerical simulations, employing simplified piecewise-parabolic method

(sPPM) simulations with varying mesh sizes to explore the importance of resolution for com-

putational results. A similar code was used by Grinstein et al. [34] at lower resolutions (up to

1640×4802). Hill et al. [36] used large-eddy simulations (LES) techniques with a fifth-order

weighted essentially non-oscillatory (WENO) scheme. Finally, Schilling and Latini [70] used

a ninth-order WENO scheme. All of these simulations showed agreement with the experimen-

tal post-reshock growth rate, which was found to be relatively insensitive to the resolution of

the numerical simulations.

Numerical simulations have also been used to obtain additional turbulence quantities, not

currently measured in experiment. In 2013, Weber et al. derived a growth-rate model for an

RMI mixing layer given arbitrary but known initial conditions [84]. In this study, the authors
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used the initial growth rate and characteristic perturbation wavelength as scaling factors, and

the model was shown to collapse the growth-rate curves and predict the peak growth rate

factor over a range of Mach numbers, Atwood numbers, adiabatic indices, and narrow-band

perturbation spectra. Reese et al. [66] used the high-order hydrodynamics code Miranda

[18] to numerically investigate the effect that small-scale three-dimensional perturbations will

have on a 2D-dominated shocked mixing layer. These simulations used the experiments of

Motl [54] as a basis for their investigation, and found that a two-dimensional domain will

not be able to accurately represent all aspects of the RMI since, at a minimum, the level of

mixing will be under-predicted. Because numerical studies such as these are able to obtain

flow quantities not currently measured in experiment, experiments with quantitative flow field

measurements inside the mixing layer are still required to validate these types of simulations.
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Chapter 3

Experimental Setup

3.1 The WiSTL Facility

Experiments were conducted in the Wisconsin Shock Tube Laboratory (WiSTL). This facility

is equipped with a 9.13 m, vertical shock tube comprised of a circular driver section of 47 cm

diameter and a square driven section with 25.4 cm sides [1]. The two sections are initially

separated by a steel diaphragm, which is burst by overpressurizing the driver, creating a shock

wave. This shock wave travels downward into the test section where it interacts with an

interface to be described in detail in Sec. 3.2 below. A schematic of the shock tube is shown

in Fig. 2.

This shock tube is designed to handle strong shocks, and has a modular construction to

allow for a variety of experimental setups. There are three distinct portions of the WiSTL

shock tube: the driver section, the diaphragm section, and the driven section. The driver

section is the top 2.08 m of the tube, which is separated from two high-pressure boost tanks

by a pair of pneumatically-controlled fast-acting valves (FAVs). Prior to each experiment, this

portion of the tube is evacuated before being filled to 90% of the 2.5 MPa rupture pressure of

the 16 gauge steel diaphragm that separates the driver section from the diaphragm section. To

create a shock wave, the FAVs are opened, allowing gas from the boost tanks to flow into the

driver section, thus providing the remaining pressure needed to burst the diaphragm and create
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Figure 2: Schematic of the shock tube, adapted from Ref [63].
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(a)

(b) (c)

Figure 3: Diaphragm and knife edge for repeatable ruptures. (a) Knife edge used for repeatable
ruptures, (b) unused diaphragm, and (c) ruptured diaphragm.

a shock wave.

The next section down is the diaphragm portion of the tube, shown in Fig. 3(a) with the

driver removed. This segment is 0.35 m in height, and contains a cross made of sharp, metal

knife edges on which the diaphragm sits. The purpose of this section is to ensure that the

diaphragm will burst in a repeatable way. The cross forces the diaphragm to rupture with

four petals that stay attached to the rest of the diaphragm; this way metal pieces do not travel

further downstream, where they can damage the shock tube and chip windows. An image of

the diaphragm before and after use is shown in Figs. 3(b) and 3(c), respectively.

Directly under the diaphragm section is the driven section, comprised of the remaining 6.7
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m at the bottom of the shock tube. The length of this portion of the tube ensures that the shock

wave has sufficient time to develop, and that it is planar by the time it reaches the interface.

The sizeable internal cross section of the driven section allows for a large region of the flow to

remain unhindered by the boundary layers that form on the side walls. The bottom half of the

driven section is the test portion of the tube, where the outer structure of the tube transitions

from a circular to a square cylinder to allow for the easy placement of windows, gas injectors,

vacuum lines, and any other tube-mounted apparati.

Embedded within the inner walls of the driven section are 12 piezoelectric pressure trans-

ducers placed along the length of the tube that are used to collect pressure readings as well

as trigger the cameras and lasers used for diagnostics. There are also seven openings in the

driven section that allow for the filling and evacuating of gases: heavy gas fill inlet at the bot-

tom, heavy gas injection at the slots, heavy gas particle seeding port below the interface, light

gas injection at the slots, light gas particle seeding port above the interface, light gas fill inlet

at the top, and vacuum opposite the slots.

3.2 Initial Condition

Creating the initial condition used in the present work is a multi-step process that begins by

evacuating the driver and driven sections to a pressure below 17 kPa in order to remove air and

any other gas impurities from the shock tube. A gravitationally stable stagnation plane is then

created by flowing a light gas from the top of the tube and a heavy gas from the bottom while

continuously evacuating excess gas through slits on the tube wall at the interface location.

This flow is maintained for several minutes to ensure that all remaining air and impurities

have been cleared from the tube.
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Figure 4: Schematic of the slots used to create the initial condition, taken from Ref [79].

After the stagnation plane has stabilized, a statistically repeatable, broadband, shear layer

initial condition [79, 81] is set up by injecting each gas through slots located on the shock tube

side wall at the interface, 2 m above the bottom of the tube. A schematic of the slots used to

create the initial condition can be seen in Fig. 4. The light gas is flowed from the bottom set of

slots while the heavy gas is flowed at a higher rate from the top set of slots, and this mismatch

of flowrates establishes the shear layer.

There are a number of important properties of this interface that are to be considered.

First, we note that this method of slot-injection from the shock tube side wall creates a three-

dimensional shear layer that can never be identically reproduced. However, introduced and

characterized by Weber et al. [79], this initial condition has been shown to be statistically

repeatable in terms of spectral content, as well as provide a reliable method of creating a

membraneless interface containing a large range of scales [81]. A summary of important gas

properties (including post-shock interface velocities, wave speeds, temperatures, densities,

and Atwood numbers) for the two Mach number cases considered in the present studies is
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Table 1: Gas properties for the two Mach number cases. Daggers denote post-shock quantities.
Gas 1 is the light gas (helium seeded with acetone) and gas 2 is the heavy gas (argon). V0 is
the post-shock interface velocity.

Mi 1.6 2.2
Mt 1.9 2.9
Wi (m/s) 1150 1576
Wt (m/s) 592 919
V0 (m/s) 315 606
Acetone (% Vol.) 7 7
ρ1 (kg/m3) 0.3 0.3
ρ2 (kg/m3) 1.6 1.6
ρ†1 (kg/m3) 0.7 1.2
ρ†2 (kg/m3) 3.5 4.8
T †1 (K) 497 761
T †2 (K) 557 1011
p†1 = p†2 (MPa) 0.4 1.0
A 0.7 0.7
A† 0.7 0.6
(1 − V0/Wi) 0.7 0.6(
ρ1/ρ

†

1 + ρ2/ρ
†

2

)
/2 0.4 0.3

given in Table 1.

Experimental images of the initial condition for PLIF and PIV studies can be seen in Figs.

5(a) and 5(b), respectively. In both images, a light gas and a heavy gas are injected from the

slots on the left side of the frame and evacuated from the right, causing flow from left to right.

The PLIF initial condition image shows a black region of pure heavy gas at the bottom of the

image, and a white region at the top consisting of only the light gas. In between these two

regions is the grey shear layer, where the light gas injected from the lower slots mixes with the

heavy gas injected from the upper slots. For comparison, the PIV initial condition image (Fig.

5(b)) shows full-field particle seeding obtained by introducing TiO2 into the regions directly
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(a) (b)

Figure 5: Images of the shear layer initial condition used in the present studies as seen by the
(a) PLIF camera, and (b) PIV camera.

above and below the interface, as well as in both horizontal gas injection streams. Details of

the experimental setup used to obtain these images are given in the next section.

3.3 Experimental Configuration

With an appreciation for the overall design of the shock tube, as well as an understanding

of how the interface is created, we can now focus on the specifics of the experimental con-

figuration used to investigate the RMI. Here, the initial condition and shocked interface are

characterized using both the PLIF and PIV methods, and each of these techniques requires

its own unique configuration of lasers, optics, and cameras; however, these individual con-

figurations must work together to yield simultaneous concentration and velocity results. A

schematic detailing the experimetal setup used for the present studies is shown in Fig. 6.

The first step of the PLIF setup involves molecularly seeding the light gas with acetone.

The ∼ 7% acetone vapor concentration used for the experiments described here is achieved

by bubbling helium through liquid acetone which is maintained at 308±3 K through the use
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Figure 6: Experimental configuration showing cameras, lasers, optics, plumbing, and molec-
ular & particulate seeding setups used for simultaneous PIV and PLIF experiments.
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of a heated water bath. This heavily seeded helium is then flowed through a second container

in a cool bath, kept at 283±2 K, in order to bring the acetone concentration down to the

desired percentage, well below the saturation level of 24%. Ultraviolet light (308 nm) from

a XeCl excimer laser (Lambda Physik LPX 210i) is formed into a sheet and used to excite

the acetone present in the helium gas for PLIF imaging. Fluorescence from the acetone is

captured on a thermoelectrically cooled (to 218 K) CCD camera (Andor model DV434-BU2),

using a 50-mm Nikon lens ( f /# = 1.2) with a Schott BG39 filter centered at 470 nm with

a full-width half-max of 271 nm, and an ultrasteep short-pass filter only allowing passage of

signal below 524 nm. This combination of filters ensures that only fluorescence signal from

PLIF is captured by the Andor sensor.

For the PIV measurements, TiO2 particles with a nominal diameter of 300 nm are seeded

into both gas cross-flows used to create the initial condition shear interface, and into the re-

gions immediately above and below the interface. These particles allow for the Mie scattering

of the second harmonic output (532 nm) of a dual-head, flashlamp-pumped Nd:YAG laser

(Ekspla model NL303D). Using a series of optics, a laser sheet is formed for use in planar

laser imaging, and allows for cameras to capture particle images with a ∼20×25 cm field of

view. Post-shock image pairs are captured with a 29 MP interline image transfer camera (TSI

inc. model 630094) using a 4 µs inter-frame time, while initial condition image pairs are taken

with the same camera, but using an inter-frame time of 1 ms. The inter-frame times are chosen

to compensate for the vastly different interface velocity fluctuations before and after acceler-

ation by the shock wave. These timings also allow for the final search box used in PIV to be

reduced in order to obtain a large number of velocity vectors, yielding finer spatial resolution

of velocity while maintaining sufficient displacement of the particles.

Because experiments are performed at two different Mach numbers and the post-shock
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Table 2: Summary of experimental image times and locations.

Distance (m) Time (ms) Time (ms) Number
from IC M = 1.6 M = 2.2 of images

IC 0 0 0 20
PS1 0.05 0.14 0.10 20
PS2 0.27 0.88 0.44 20
PS3 0.67 2.16 1.12 20
PS4 1.21 3.84 2.05 20

interface was captured at the same locations for each case, the timings used to capture the in-

terface in a given window downstream of the initial condition will be different for the two sets

of experiments. These distances and timings are summarized in Table 2. Important timings

are also shown in the x-t diagrams of Fig. 7. In these figures, the leftmost red line shows

the contact surface between the driver and the driven gas, while the rightmost red line de-

notes the interface location. The black line downstream (to the right) of the contact surface

represents the shockwave, shown to break into a rightward-traveling transmitted wave and

leftward-traveling reflected wave after hitting the interface. The black lines to the left of the

contact surface represent an expansion fan, while the light blue bands show the locations of

the windows used for imaging the interface throughout the development of the RMI.

3.4 Experimental Error

The thickness of the laser sheet is an important factor in determining experimental error for

both PLIF and PIV measurements. Laser sheet thickness as a function of height was deter-

mined using a scanning knife edge technique for both the 308 nm excimer laser and the 532

nm Nd:YAG laser, where the relative power of the laser was measured as a razor was traversed
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(a) (b)

Figure 7: x-t diagrams for the (a) M = 1.6 and (b) M = 2.2 experiments. Rarefaction waves
are shown as thin black lines initially propagating leftward (upward) into the driver, while the
shock front is shown as the thick black line initially traveling rightward (downward) into the
driven section. Light blue bands show the imaging windows, and the right-most red line shows
the interface location.

through the sheet. In this way, measurements of the sheet thickness can be made at several

downstream locations, and the laser waist can be determined by finding the minimum of the

fit over several measurement locations. For PLIF experiments, the laser sheet thickness at the

point of imaging was determined to be ∼0.7 mm, while a thickness of ∼0.5 mm was found for

PIV studies. Measurements across the laser sheet at a single downstream location are shown

in Fig. 8(a) for the Nd:YAG laser sheet. The circles in Fig. 8(b) represent the half-widths of

the 10-90% energy thickness of the sheet [71] as measured from profiles shown in Fig. 8(a) at

several location along the height of the beam path. The equation for the propagation of a real

(non-Gaussian) laser beam [72] is given by

w2
b(z) = w2

b,0 +

(
M2

b
λ

πwb,0

)2

(z − z0)2, (3.1)
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(a) (b)

Figure 8: Thickness measurements of the 532 nm laser sheet using scanning knife edge
method and a 2 m focal length spherical lens. (a) Cumulative power vs. razor blade traversal,
and (b) beam waist vs. beam path distance (as measured from the location of the spherical
lens).

where wb is the beam waist, λ is the wavelength of light, and M2
b accounts for the beam’s

departure from a Gaussian profile. By fitting the measured beam waists, values of wb,0 = 0.46

mm, z0 = 2085 mm, and M2
b = 5.2 are found for the Nd:YAG laser, and values of wb,0 = 0.72

mm, z0 = 2206 mm, and M2
b = 72 are found for the excimer laser. The high M2

b value of the

308 nm laser is expected due to the non-Gaussian profile typical of excimer beams.

Although one should work to obtain the thinnest sheet possible for PLIF imaging (in order

to avoid obtaining an integrated signal over the entire thickness of the laser sheet), there is

an advantage to having a finite thickness in the laser sheet for PIV. Because velocity is three

dimensional, any out-of-plane velocity will not be captured. In the case of PIV measurements,

this corresponds to a particle moving out of the imaging plane, and thus being unable to be

correlated between images. Using the measured thickness of the sheet used for PIV studies, as

well as the timing between sucessive images, we find that a particle centered in the laser sheet
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would need to be moving at several hundred m/s in the y-direction in order to escape the laser

sheet. Since this velocity is much higher than any velocity-fluctuations measured in the x−

or z−directions, out-of-plane particle motion should have a negligible influence on velocity

measurements.
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Chapter 4

Data Processing

4.1 Concentration from PLIF

Prior to processing the PLIF images to reveal mole fraction, the background signal is sub-

tracted from each raw image. The background signal is an ensemble average of 10 images

with the same optical setup, including laser pulses, but with no acetone in the field of view.

This background image contains both the camera noise and light scattered off the walls of the

shock tube. A second background subtraction step is then applied, subtracting the average

intensity in the unseeded portion of the flow (i.e. the lower portion of the image). This en-

sures that the unseeded portion of the flow has an average intensity of zero. Analytically, this

procedure is

S f ,temp
i, j = Iraw

i, j − 〈I
bg
i, j,k〉k , (4.1)

S f
i, j = S f ,temp

i, j − 〈S f ,temp
i, j 〉i, j∈{unseeded} , (4.2)

where angle brackets denote averaging over the subscript, k is the background image number,

{unseeded} is the rows and columns of the unseeded region of the image, and S f is the final

fluorescence signal. Equation (4.1) is an element-wise subtraction of a matrix and Eq. (4.2) is

a subtraction of a constant value.

Next, the background-subtracted PLIF images are processed to extract the light-gas mole

fraction, ξ, by correcting for non-uniform laser profile, laser sheet divergence, and Beer’s law
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attenuation. First, the background-subtracted PLIF image is transformed to an r − θ coordi-

nate system aligned with the laser beam and is corrected for the signal decrease from laser

sheet divergence. Then a region in the top portion of the image is selected where a uniform

concentration of pure seeded (light, ξ = 1) gas exists. The Beer’s law attenuation coefficient

is determined from this region, corresponding to the acetone absorption cross section. The

normalized acetone concentration can then be computed [16] by integrating downward while

accounting for the divergence of the laser sheet, such that deviations from Beer’s law attenua-

tion are attributed to mixing of unseeded (heavy) gas or changes in temperature. The equation

for this is

ξ =

T
T1

S f

S f ,R − n1σφ

∫ R

r

S f

φ
dr
, (4.3)

where S f is the local fluorescence signal, S f ,R is the fluorescence signal at the top of the image

where it is assumed ξ = 1, T/T1 is the temperature ratio in relation to the pure seeded region,

n1σ is the product of number density and absorption cross section in the pure seeded gas (this

product is measured by the exponential signal variation in the top of the image), and φ is the

fluorescence quantum yield. The integral is carried out from the location r to the top of the

image at location R. This process is similar to that used by Weber et al. [85]. It should be

noted that temperature is approximated as

T = T †2 + (T ‡1 − T †2 )ξ , (4.4)

where T ‡1 and T †2 are the post-shock temperatures in the pure light and heavy gases, respec-

tively, calculated from 1D gas dynamics.

Once concentration has been determined from fluorescence signal as described in equation

4.3, the concentration field is then mapped back into the x − z coordinate system. Finally, the
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2D Fourier transform of the corrected image is computed and the spectrum is notch filtered to

remove index of refraction artifacts that appear during the image processing proceedure [83].

Following the notch filtering, the inverse tranform of the corrected spectrum is computed and

a final concentration field is obtained for each experiment. A representative raw PLIF image

is shown in Fig. 9(a), and the corresponding processed image showing concentration is shown

in Fig. 9(b). In the corrected PLIF image, white indicates pure light gas, black corresponds to

pure heavy fluid, and gray regions represent mixed gas of various species concentration.

4.2 Velocity from PIV

The concept behind obtaining velocity from PIV particle image pairs is simple: with a known

time between images ∆t, if a group of particles from image one is advected to a different

location in image two and the spatial displacement of that group of particles ∆x(x, t) can be

determined, the velocity u(x, t) for that small search region is estimated using

u(x, t) =
∆x(x, t)

∆t
. (4.5)

In the present experiments, the most-likely displacement vector of particle groups is deter-

mined through spatial correlation analysis of the experimental particle image pairs using the

Insight 4G PIV software package from TSI Inc.

For each of the 20 concentration images obtained at every post-shock time, a correspond-

ing particle image pair is captured by the PIV camera such that each pixel is ∼50 µm in the

focal plane. A single raw particle image is shown in Fig. 9(d). Similarly to processing PLIF

images, the first step in obtaining velocity from PIV image pairs is subtracting the background

signal from each raw image. Here the background signal for the first particle image is an
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(a) (b) (c)

(d) (e) ( f )

Figure 9: Representative data processing results and field matching for PLIF and PIV. (a) Raw
fluorescence signal, (b) corrected PLIF image showing concentration with white indicating
pure light gas and black corresponding to pure heavy fluid, (c) vorticity overlaid on ξ field
to show field matching, (d) raw PIV particle image, (e) output streamwise velocity with red
indicating downward-moving gas and blue corresponding to upward-traveling fluid, and (f)
output transverse velocity with red indicating rightward-moving gas and blue corresponding
to leftward-traveling fluid.
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ensemble average of 10 first-frame images, while the background signal for the second par-

ticle image of the pair is an ensemble average of 10 second-frame images. As with PLIF, all

background images use the same optical setup, including laser pulses, and contain both the

camera noise and light scattered off the walls of the shock tube; however, no TiO2 particles

are present in the field of view for PIV background images. It is this background-subtracted

particle image pair that is used as input to the Insight 4G PIV algorithm.

Before conducting cross correlation, a 5 × 5 Gaussian filter with σ = 0.5 is applied to

background-subtracted image pairs. Following this pre-processing step, a recursive Nyquist

grid is used to break the input images into smaller spots for processing, and the first processing

pass computes the vector field at a starting spot size of 128×128 pixels with 50% overlap grid

spacing. The results of this first processing pass are then used to optimize the spot offsets

for the second pass, where the spot size is reduced by a factor of two. This optimization and

spot-size reduction occur once more so that a final spot size of 32 × 32 pixels is achieved. At

each pass, a zero pad mask is applied to compute the average pixel intensity of each spot and

subtract it from each pixel prior to passing the spots to the correlation engine. This zero pad

mask is chosen to increase the signal-to-noise ratio of correlations.

A direct correlator is used to compute the correlation function of the masked spots and

return the result as a correlation map. The correlation is computed by first determining the

mean intensity in the sample box of image one,

Īa =
1

BxBy

Bx∑
k=1

By∑
l=1

Ia(k, l) , (4.6)

and the mean intensity of the current test box in image two,

Īb =
1

BxBy

Bx∑
k=1

By∑
l=1

Ib(k + i, l + j) , (4.7)
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where Ia(1, 1) and Ib(1, 1) represent the pixel intensities at the corner of a pattern box of size

Bx by By, centered at image coordinates (x,y), in images 1 and 2, respectively. This spot mean

intensity is then subtracted from each pixel, and the product of intensities at each pixel offset

is summed to give the correlation map. This correlation map is adjusted by an autocorrelation

factor to increase the displacement measurement accuracy, giving the variance normalized

correlation, or covariance c(i, j), defined by

c(i, j) =

∑Bx
k=1

∑By

l=1(Ia(k, l) − Īa)(Ib(k + i, l + j) − Īb)

[
∑Bx

k=1

∑By

l=1(Ia(k, l) − Īa)2 ∑Bx
k=1

∑By

l=1(Ib(k + i, l + j) − Īb)2]1/2
. (4.8)

The highest peak in this correlation map is used to locate the particle image displacement, and

is determined using a Gaussian peak engine. The Gaussian peak engine locates the correlation

peak with sub-pixel accuracy by fitting a Gaussian curve to the highest pixel and its four

nearest neighbors. Two 3-point fits are done: one in the x direction with the peak pixel and

the pixels to the left and right of the peak, and one in the z direction with the peak pixel and

the pixels above and below the peak. The Gaussian peak equation is given by

dx = x +
log(l) − log(r)

2[log(l) + log(r) − 2log(c)]
− x0 , (4.9)

where l, r, and c are the intensity value for the left, right, and peak pixels in the correlation

map, x is the integer shift, and x0 is the zero shift location.

With the x and z displacements determined by Insight, full-field transverse and streamwise

velocity can be easily determined using Eq. (4.5) with the known inter-frame time between

particle images. Velocity results are then post-processed to remove outliers using a global

validation and a 5 × 5 pixel local test to replace velocity values outside 3σ with the local me-

dian. Typical velocity results for the streamwise and transverse directions are shown in Figs.

9(e) and 9(f), respectively. Figure 9(e) shows streamwise velocity, with downward-traveling
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regions in red and upward-moving fluid in blue. Comparison with Fig. 9(b) shows that regions

of upward-going gas correspond to spikes and downward-moving regions correspond to bub-

bles in the interface structure. Figure 9(f) shows transverse velocity, with rightward-traveling

gas in red and leftward-moving fluid in blue.

4.3 Field Matching

With concentration and velocity fields determined from the raw PLIF and PIV images as

described in the previous two sections, the velocity results determined by Insight 4G must now

be matched to the corrected ξ field coordinate system. This is accomplished using images of a

test target taken prior to each experiment by both the PLIF and PIV cameras to determine the

transformation matrix T that will map the PIV target coordinates (x, z) to the PLIF target (and

ξ field) coordinates (x, z) as

[x z] = [x z 1]T . (4.10)

Because both cameras’ lines of sight are perpendicular to the imaging plane with an overlap-

ping region of interest, the transformation to map the PIV target image to the concentration

field need only include rotation, scaling, and a two-dimensional translation, such that

T =


s cos(Θ) −s sin(Θ) 0

s sin(Θ) s cos(Θ) 0

Tx Tz 1


, (4.11)

where s is the scale factor, Θ is the rotation angle, Tx is the x-direction translation, and Tz is

the z-direction translation. Target images are used to determine the four unknown parameters

in Eq. (4.11) by using control points to determine the geometric transformation T . A sample

target image from the PIV camera is shown in Fig. 10(c) with four control points selected;
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the corresponding control points are then selected on the target image from the PLIF camera,

shown in Fig. 10(d). In this way, one can ascertain the transformation variables required to

match the control points selected in the (x, z) coordinate system (Fig. 10(c)) with the control

points in the (x, z) coordinate system (Fig. 10(d)). With the transformation variables deter-

mined in this way, T can be applied to the TSI target image to account for rotation, scaling,

and two-dimensional translation. This transformed PIV target image is shown in Fig. 10(e),

and should be compared against the corresponding PLIF target image in Fig. 10(f).

Before applying the determined transformation to velocity fields, velocity output from

Insight 4G (Fig. 10(a)) must first be resized to match the PIV target image. Since the final

search box used to determine velocity from the PIV particle image pair was 32 × 32 pixels

with 50% overlap, this means that for each 16 × 16 pixel region in the PIV target image, there

will only be a single pixel in the corresponding velocity field. Hence, prior to applying T ,

velocity fields are first up-sampled using a bi-cubic interpolation where the output pixel value

is a weighted average of pixels in the nearest 4 × 4 neighborhood. This upsampled velocity

field is shown in Fig. 10(b). Finally, because the two cameras’ sensors had different aspect

ratios, the transformed velocity field must also be cropped to the same 1024 × 1024 size as

the ξ field. By cropping the transformed velocity results, each pixel in the u(x, z) and w(x, z)

field will match directly to a corresponding pixel in the ξ(x, z) field. This transformed and

cropped streamwise velocity field is shown in Fig. 10(g) and should be compared against the

corresponding PLIF image in Fig. 10(h) to show the matched features between these fields in

the proper coordinate system.

The effectiveness of this matching technique can be seen by overlaying the transformed

velocity results on the concentration field. This is demonstrated by first computing the vorticity

from velocity fields, ω ≡ ∇ × u, and overlaying vorticity above a certain threshold on the
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Figure 10: Image registration between velocity and concentration results. (a) Velocity data
output from Insight, (b) upsampled velocity field matching resolution of PIV target image, (c)
PIV target image showing control points, (d) PLIF target image showing control points, (e)
registered PIV target image, (f) PLIF target image, (g) registered velocity field matching PLIF
image, and (h) raw PLIF image.
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corresponding ξ field, as shown in Fig. 9(c). Here we see that, as expected, the regions

of strongest vorticity correspond directly to those locations of concentration that have the

strongest gradients. Moreover, by visualizing the vorticity of the gas within the mixing zone,

further insight into the effect of velocity on interface structure can be easily obtained.

4.4 Decomposition of Fields

The first step in determining velocity fluctuations in the flow is to subtract the field average

velocity from each pixel. For the streamwise direction, this subtraction accounts for the post-

shock interface velocity, and is near the 1D gas dynamics value of the flow (∼315 m/s for

M = 1.6, and ∼605 m/s for M = 2.2), such that

ŵ = w − wavg , (4.12)

where w is the measured velocity field, wavg is a single value representing a global field average

velocity, and ŵ is the mean-subtracted velocity field which will be referred to as the global

fluctuations. This ŵ field has a velocity distribution centered about 0 m/s, and shows the

large-scale structure of the streamwise velocity. An example of a mean-subtracted velocity

field is shown in Fig. 11(a). The same process is also carried out for the transverse velocity

field.

With the global fluctuation fields determined from Eq. (4.12), the flow can now be further

decomposed into a mean field and a local fluctuation field. Two different methods were applied

to achieve this decomposition, and each was applied to both the concentration and velocity

fields so that

û = u + u′ and ξ = ξ + ξ′ , (4.13)



41

(a) (b) (c)

(d)

Figure 11: Field decomposition showing the (a) global-mean-subtracted field ŵ, (b) mean field
w, (c) fluctuation field w′, and (d) line plots showing the breakdown into mean and fluctuations
through the mixing layer. Line plots in (d) are taken from the center row. Colorbars in (a)-(c)
are in m/s.
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where an overbar indicates the mean field, and a prime denotes the fluctuating field which

will be referred to as the local fluctuations. Ideally, one would ensemble average results over

several experiments to obtain a mean flow field; however, the run-to-run variation of the fields

proved too great to give meaningful results using this method. Instead, the first technique we

will explore to determine this decomposition involves using a two-dimensional moving boxcar

average to calculate a mean component of concentration and velocity for each experiment,

while the second method utilizes spectral filtering to remove small-wavenumber features from

the fields.

The mean flow field was first obtained for each experiment by filtering the concentration

and velocity global fluctuation fields with a 2D moving boxcar average. Of course, since this

method of filtering utilizes a set window size over which averaging occurs, the size of the

filtering window should be based on some macroscopic feature of the flow to account for the

growth of the mixing layer thickness over time. Here, the filter window size was chosen to

be 1/20 of the campaign-average height of the 0.05 < 〈ξ〉 < 0.95 region of the mixing layer.

In this way, as the number of pixels over which the average is being calculated increases, the

boxcar average window grows proportionally. After applying this filter to the concentration

and global-fluctuation velocity fields to obtain the mean component of the flow, results were

subtracted from the ξ and û fields to yield the local fluctuation fields.

A spectral method was also used to determine the decomposition of concentration and

velocity fields. For this method, a two-dimensional fast Fourier transform (FFT) is performed

on the field before applying a Fermi-Dirac soft cutoff filter [35], which was constructed as

1

1 + exp
(
kxz − kc

0.1kc

) , (4.14)

where kxz =
√

k2
x + k2

z is the two-dimensional wavenumber, and kc = (2π)/Lc is the cutoff
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wavenumber with Lc being the cutoff lengthscale. The filter gradually sets the Fourier coeffi-

cients above kc to zero. The Liepmann-Taylor scale, defined by Grinstein [33] as λL = 2.17λT

(where λT is the Taylor microscale), makes a natural cutoff lengthscale as λL represents the

smallest scale generated by the largest eddies. In other words, the Liepmann-Taylor scale

bounds the isotropic region from the energy containing range (i.e. is an upper limit of the

inertial range). Finally, the two-dimensional inverse fast Fourier transform (IFFT) is applied

to obtain a low-pass (or spatially averaged) field. As with the moving boxcar method, this

average field is subtracted from the ξ or û field to obtain the local fluctuation field. Results

using this spectral method showed good agreement with results using the boxcar method.

Field decomposition results are shown in Fig. 11 for the streamwise component of veloc-

ity using the spectral method of filtering. Figure 11(a) shows the ŵ global fluctuation field,

and Figs. 11(b) and 11(c) show the corresponding mean w and local fluctuation field w′, re-

spectively. We note that Fig. 11(c) shows large fluctuations embedded in underlying smaller

random fluctuations, and that the regions of strongest fluctuations correspond with the regions

of highest vorticity, as shown in Fig. 9(c), which in turn correspond to the regions of largest

gradient in the ξ field. A line plot from the center row of each velocity component field is

shown in Fig. 11(d), where the black line shows the global fluctuation, the blue line shows

the mean component of velocity, and the red line shows the local fluctuating component of the

flow.
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Chapter 5

Results and Discussion

5.1 Field Structure and Distribution

With the concentration and velocity fields now matched and decomposed using methods dis-

cussed in Chapter 4, this chapter presents results and a detailed discussion regarding the phys-

ical significance of these findings. The structure of the concentration, velocity, and vorticity

fields is discussed in detail, and the distribution of these quantities is explored using probabil-

ity density functions (PDFs). The experimental campaign underpinning the results shown here

yielded full-field concentration and velocity results for nearly 200 shocked interfaces; a rep-

resentatitve subset of these fields is shown in Fig. 12 for the M = 1.6 experiments and in Fig.

13 for the M = 2.2 runs. The leftmost column of these figures shows concentration results,

where white corresponds to pure light gas, black corresponds to areas containing only argon,

and gray indicates regions of mixed fluid. The second column shows the global fluctuation

transverse velocity field, where blue corresponds to leftward-moving gas and red indicates

rightward-going fluid. The third column of Figs. 12 and 13 shows the global fluctuation

streamwise velocity field, with blue indicating upward-moving fluid and downward-traveling

gas shown in red. Finally, the last column shows the vorticity field ωy (henceforth referred to

simply as ω) calculated from the curl of the velocity. The broadband, shear-layer initial con-

dition is shown in the top row, and post-shock results (PS1-PS4) are shown in the following
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four rows. Note the difference in colorbar scaling for velocity and vorticity fields between

the initial condition and post-shocked results due to the vastly different velocities within the

mixing layer before and after acceleration by the shock wave.

The shear-layer initial condition ξ-field is shown in the first column of the top row of Fig.

12, while the û field shows a rightward-moving jet corresponding to the injected gas from the

left side of the tube, with recirculation zones developing above and below the injection sight

on the left side of the velocity field. The ŵ field shows alternating upward and downward

traveling gas typical of the Rayleigh-Taylor and Kelvin-Helmholtz intabilities. Due to the

horizontal injection of gas used to create the shear layer, vorticity fields for the initial condition

show a generally horizontal banding of vorticity across the interface. In the next row down,

the PS1 ξ-field shows compression of the interface following passage of shock wave, while

û shows the beginning of a breakup of the coherent jet seen in the initial condition and ŵ

shows an intensifying of the alternating upward and downward velocity. There is a continual

breakup of the jet and a development of large-scale spike and bubble structures seen at each

succesive post-shock time, until coherent spike and bubble structures appear by the latest post-

shock time. In the last row of Fig. 12, the effect of velocity on interface structure is evident

as regions of strong upward motion correspond with spike features, and downward moving

gas aligns perfectly with bubbles in the ξ-field. Vorticity is shown to be strongest along the

regions of largest gradients in the ξ-field, and the horizontal banding of ω seen at the initial

condition has given way to alternating vertical bands of vorticity aligned with the spike and

bubble structures seen at the PS4 time.

Results from the M = 1.6 experiments are similar to the higher Mach number case, al-

though there is more turbulent mixing occuring by late times for the M = 2.2 case, as evident

by the break down to smaller-scale features and more “gray” mixed gas regions in the ξ-fields.
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This increased mixing at higher Mach number is explored further through probability density

functions (PDFs) of concentration, as well as the density self-correlation across the mixing

layer as discussed in Sec. 5.4.

The overall composition of the mixing layer (within 0.05 < 〈ξ〉 < 0.95) is obtained from

two-dimensional PDFs of concentration by

PDF(ξ) =

∫ 0.5

−0.5
PDF(ξ, z̃) dz̃ , (5.1)

where z̃ is the vertical direction scaled by the 5-95% height of the interface. These PDFs

are shown in Fig. 14 for the (a) M = 1.6 data and (b) M = 2.2 data. The PDFs show that

a local peak near ξ ∼ 0.5 reduces over time and appears to mix with the lighter (ξ = 1)

fluid. This process occurs more rapidly in the M = 2.2 case and results in an increase in the

contribution of ξ > 0.5 fluid at late time. This bias for mixing of the lighter fluid has been

noticed elsewhere and is attributed to the greater inertia of the heavy fluid [44, 85]. Figures

14(a) and 14(b) also show a nearly monotonic increase of PDF(ξ) in time for ξ = 0 and ξ = 1

due to the development of spikes and bubbles in the mixing zone. A rapid increase in PDF(ξ)

near ξ = 1 for the M = 1.6 case indicates that light gas is penetrating into the mixing layer

without mixing, while the more gradual increase in PDF(ξ) near ξ = 1 for the M = 2.2 case

shows that, while there is a larger fraction of light fluid in the mixing layer due to bubble

development, this fluid is mixing with the surrounding gas as it penetrates the interface.

This same method of determining PDFs within the 5-95% mixing region is applied to the

corresponding transverse and streamwise global velocity fluctuations as well. Global velocity

fluctuations in the transverse direction (shown in Figs. 14(c) and 14(d) for the M = 1.6

and M = 2.2 cases, respectively) show a dual-peaked PDF(û) for the initial condition. The

right peak seen in the inital condition PDFs is due to the positive velocity associated with the
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(a) (b)

(c) (d)

(e) ( f )

Figure 14: Probability density functions of (a) ξ for the M = 1.6 case, (b) ξ for the M = 2.2
case, (c) û for the M = 1.6 case, (d) û for the M = 2.2 case, (e) ŵ for the M = 1.6 case, and
(f) ŵ for the M = 2.2 case. Units for û and ŵ are m/s.
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rightward-moving gas jet used to set up the shear layer, while the left peak corresponds to the

distribution about the stationary u = 0 gas. This left peak is not centered on 0 m/s since it

has been shifted away from zero by the subtraction of uavg to obtain the û field. Following

passage of the shock wave, the velocity increases by roughly two orders of magnitude and the

two peaks begin moving closer together. This convergence of peaks continues through PS2,

until they have combined into a single peak by PS3 for each case. By PS4, transverse velocity

again begins to develop a dual-peaked structure, likely due to the outward-growth associated

with expanding spikes and bubbles that have developed by this latest time.

In the streamwise direction, PDFs show (in Figs. 14(e) and 14(f) for the low and high Mach

number cases, respectively) a nearly Gaussian distribution of velocity at the intial condition

that increases by roughly three orders of magnitude following shock acceleration. The PDF

distrubution peaks at PS3 for the M = 1.6 case and at PS2 for the M = 2.2 case, and this

difference could be associated with an earlier transition to turbulence for the higher Mach

number case. Further evidence of this transition occuring near PS3 for the M = 1.6 case and

near PS2 for the M = 2.2 case is presented through measurements of density self-correlation

and Reynolds number in Secs. 5.4 and 5.8, respectively. After reaching the peak value near

ŵ = 0, the PDF(ŵ) distribution takes on a dual-peaked structure due to the development of

large-scale spikes and bubbles. This two-peaked structure of the PDFs for streamwise velocity

begins sooner and shows greater spread in velocity by the latest time for the high Mach number

case, though both cases show a larger peak associated with the upward-moving (ŵ < 0) spikes

than for the downward-going (ŵ > 0) bubbles.



51

5.2 Spanwise-Averaged Profiles

Velocity and concentration profiles are investigated here, where the spanwise-averaged mole-

fraction field is defined by

〈ξ〉 =
1

x2 − x1

∫ x2

x1

ξ dx , (5.2)

where x1 and x2 are the first and last column for which ξ measurements were obtained, respec-

tively, such that the integral is performed across the entire width of the field for each experi-

ment to yield a single profile. A similar approach was used for the transverse and streamwise

global velocity fluctuations. These profiles from individual images are then scaled by h5−95,

and ensemble averaged to create a single profile at each time. Ensemble spanwise-averaged

profiles for each post-shock time are shown in Fig. 15, with results for M = 1.6 experiments

on the left, and profiles from the M = 2.2 case on the right.

The top row of Fig. 15 shows the spanwise-averaged concentration results. These profiles

look very different from previously reported profiles [85] despite the similarities with these

earlier studies. The difference comes from the chosen match-point for interface height scaling

and ensemble averaging. Because each experiment produces interface of differing thickness,

when scaling by the h5−95 and averaging results from individual runs, experiments must be

matched at a chosen point. This match point will be the common location where profiles from

each time will overlap, by definition. In previous experiments, the ξ = 0.05 (or ξ = 0.95)

locations were used as match points, and profiles showed rough, irregular slopes matched

at the corresponding z/h5−95 =-0.5 (or 0.5) locations. In the present work however, a more

natural value of ξ = 0.5 was chosen as the match point. As a result, concentration results in

Fig. 15 show more symmetric, “S”-shaped spanwise-averaged profiles which are centered on

z/h5−95 = 0.
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Figure 15: Spanwise-averaged profiles of concentration and velocity for M=1.6 (left) and
M=2.2 (right). From top to bottom: Concentration, global transverse velocity fluctuations,
and global streamwise velocity fluctuations.
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The initial condition concentration profile shows a gradual slope with a kink in the profile

just below the z/h5−95 = −1 location. This kink should be atributed to variability in the exact

location of the shear-jet used in creating the initial condition interface, which is shown to

be located at a similar z/h5−95 height in the transverse velocity profiles in the second row

of Fig. 15. After shock, this gradual slope is shown to steepen in time, with a more rapid

increase occuring for the higher Mach number case. This steepening in time is a result of pure

(ξ = 0 or ξ = 1) gas being pushed into the mixing zone with the development of spikes and

bubbles at late times. Consequently, bubbles will cause the 〈ξ〉 value to increase ever-closer

to the interface midpoint above the z/h5−95 = 0 location, while spikes will drive the 〈ξ〉 value

towards zero below the interface.

In the second row of Fig. 15, spanwise-averaged profiles are shown for the global trans-

verse velocity fluctuations, û. These profiles show the rightward-moving jet used to establish

the shear layer intial condition occurring near z/h5−95 = −0.7, along with recirculation zones

directly above and below the jet region. These features are also clear in the transverse velocity

fields shown in Figs. 12 and 13. Following passage of the shock wave, global transverse veloc-

ity profiles for PS1 show compression and a nearly 10× increase in jet velocity. The jet is also

shown to push downwards from the top of the mixing layer towards the center of the mixing

layer near z/h5−95 = 0. At higher M acceleration there is greater compression of the jet, which

is also pushed deeper into the center of mixing layer when compared with the low M case.

The velocity in the recirculation zone above the jet is accentuated as time progresses such that

the entire region above the jet pushes leftward at late time. Alternatively, a monotonic increase

in spanwise velocity with time is observed to occur below the interface, corresponding to bulk

rightward motion below the interface midpoint. This increase in spanwise-averaged global

transverse velocity above and below the interface is roughly 3× greater for the higher Mach
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number case than in the low Mach number experiments.

Finally, spanwise-averaged profiles of the global streamwise velocity fluctuations are shown

in the bottom row of Fig. 15. While not easily seen in Fig. 15, the streamwise velocity in the

initial condition is found to be positive above the interface and negative below it. This is due

to the fact that the light gas is filled from the top of the tube and flows downward (with posi-

tive streamwise velocity), while the heavy gas is filled from the bottom of the tube and pushes

upwards (with negative streamwise velocity) towards the interface. From the initial condition

to PS1, velocities in the streamwise direction are shown to increase by more than two orders

of magnitude. Each successive profile shows a general steepening in time, corresponding to an

increase in velocity, with regions above the interface moving downwards with ever-increasing

speed, and regions below the interface moving upwards increasingly rapidly. This trend is

likely due to the development of the large-scale spikes and bubbles in the flow, where the

light gas continues to push downwards through the interface, and the heavy gas approaches

the mixing zone more readily with the development of penetrating spikes. Similar trends are

observed for both the low and high Mach number cases, with slightly higher velocities by the

latest time for the M = 2.2 case.

5.3 Mixing-layer Thickness

Threshold measurements of the 0.05 < 〈ξ〉 < 0.95 mixing-layer thickness, h5−95, are made us-

ing a spanwise-averaged mole-fraction field similar to results discussed in the previous section,

but with an important adjustment made to the interface. Since better collapse of the thickness

measurements was obtained by removing large-scale structures from the mixing-layer, this in-

terface adjustment is made prior to spanwise averaging the field. This is done by first finding
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(a) (b)

Figure 16: Mixing layer thickness measurements. (a) Adjusted interface [bottom] eliminates
additional height added by large-scale features present in the uncorrected mixing layer [top],
and results in better collapse of thickness measurements. (b) Symbols show the average non-
dimensional threshold measurements of the 0.05 < 〈ξ〉 < 0.95 region in time, error bars show
the standard deviation from the 20 experiments, and dotted line shows a power-law fit to data.

the midpoint location between the 〈ξ〉 = 0.05 and 〈ξ〉 = 0.95 rows for each column, defined

as z0 and shown in Fig. 16(a) [top] as a red line across the mixing layer. Each column is then

vertically shifted to bring all z0 to the same height, as shown in Fig. 16(a) [bottom]. If the

column was shifted upwards, the bottom of that column was padded with zeros, while if the

column was moved downwards, the top of the column was filled with ones.

From the adjusted interface, threshold measurements of h5−95% were obtained for each

experiment and averaged to give a single thickness measurement at every post-shock time.

Results were nondimensionalized using h∗0 – the pre-shock interface thickness scaled by the

compressed value (1 − V0/Wi) – and the dominant wavenumber,

~ = (h5−95% − h∗0)k0, (5.3)

and time was nondimensionalized as,

τ = tV0A+h∗0k2
0, (5.4)

where t is the time, V0 is the post-shock interface velocity, A+ is the post-shock Atwood
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number, and k0 is the dominant wavenumber. The value for k0 is determined from the initial

conditions as k0 = 2π/λ0, similarly to [79]. These nondimensional thickness measurements

are shown in Fig. 16(b), where error bars show the standard deviation at each time, and the

dotted line shows a power-law fit to data such that

(h5−95% − h∗0)k0 = a(tV0A+h∗0k2
0)θ , (5.5)

where a is unity and the power law fits θ = 0.34±0.01. This value of θ is similar to previously

reported values (0.25 ≤ θ ≤ 0.5) in the work of Dimonte [25, 26], Prasad [60], Weber [85],

and Jacobs [38].

A similar measure of the mixing layer thickness, called the mixing product thickness, hp,

can be obtained from the adjusted spanwise-averaged profiles. This has been used previously

by Cook [20] and Weber [85], and is defined as

hp =

∫ ∞

−∞

ξp (〈ξ〉) dz, (5.6)

where

ξp(ξ) =


2ξ for ξ ≤ 0.5

2(1 − ξ) for ξ > 0.5

(5.7)

is the mixture composition, and an equimolar mixture is ξp = 1. This quantity is shown in

Fig. 17 and these integral measurements of thickness are found to be linearly proportional

to the threshold measurement h5−95 value (hp = 0.57h5−95). This proportionality is identical

to measurements made by Weber [85], despite the different growth exponent θ due to the

adjustment used to remove large-scale features from the interface.

The threshold and integral measurements of the mixing layer thickness explored above

do not differentiate between mixed gas and gas that is penetrating the interface but remains
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Figure 17: Comparison of mixing layer thickness definitions showing that integral measure-
ments are proportional to threshold measurements of thickness.

unmixed. For this, a definition of “mixedness” will need to be defined. The relative amount

of molecular mixing occuring within the interface can be characterized as a ratio of a mixing

length to an entrainment length. Multiple definitions have been proposed, but perhaps the two

most commonly referenced global mixing parameters are those by Youngs [90]:

Θ =

∫ ∞
−∞
〈ξ(1 − ξ)〉dz∫ ∞

−∞
〈ξ〉〈1 − ξ〉dz

, (5.8)

and a similar definition by Cook & Dimotakis [20]:

Ξ =

∫ ∞
−∞
〈ξp〉dz

hp
. (5.9)

For both cases, a ratio with a value of 1 corresponds to a fully homogenized fluid without

interpenetrating perturbations, while a value of 0 indicates no molecular mixing of the fluids.

Both definitions were compared in [19] and [47] and were shown to give very similar results.

This similarity between the two definitions of global mixing is also seen in the current studies.

The latter definition was used by Weber [85], and produced results comparable to those found

for Ξ in the present work.
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Figure 18: Comparison of mixing definitions Ξ and Θ for the low and high Mach number
experiments.

As shown in Fig. 18, the value of both Θ and Ξ is found to strictly decrease in time for the

low M case, and decrease before increasing again for the high M case. Youngs’ definition of

mixedness is larger than Cook’s definition during compression, while the opposite is true at

late times. This is a similar trend to what has been previously reported, where Θ underpredicts

the initial homogenization of fluid and then also underpredicts the ensuing fluid mixing at

later times when compared to Ξ values of mixedness. Measurements of Ξ show that both

Mach numbers reach a final value near 0.8, which is the asymptotic value reported after the

onset of turbulent mixing in Rayleigh-Taylor simulations [19], while Θ approaches a value

slightly below 0.8. Simulations have also shown that the cross from Θ over-predicting to

under-predicting the mixed fluid measurement occurs following the rapid growth of Θ and

Ξ that occurs after reaching the minimum value. This could be used to argue that, like the

M = 2.2 case, the M = 1.6 value for Θ and Ξ could also decrease between PS1 and PS2 before

increasing again at later times; however, this effect is not captured at the times the interface

was studied in this work. Future work should aim to better resolve the time between PS1 and



59

PS2 (especially for the low Mach number case) to investigate if such a trend is observed.

5.4 Density Self-correlation

The density self correlation (DSC) is another measure of fluid mixing, where a value of zero

indicates perfectly mixed fluid. Density self-correlation is an important quantity for turbulence

modeling and appears in the production term of the mass flux equation. DSC is involved in

the conversion of potential energy into kinetic energy, and is defined by

b = −〈ρ′
(
1
ρ

)′
〉 , (5.10)

where brackets denote spanwise averaging and primes indicate fluctuations. The DSC is de-

termined by first calculating the density field from the measured concentration field and the

known post-shock density values

ρ = ρ†2 + (ρ‡1 − ρ
†

2)ξ , (5.11)

where a single dagger indicates once-shocked gas, a double dagger represents twice-shocked

gas (by the incident and reflected shock wave), and ρ1 and ρ2 are the density of the light

and heavy gas, respectively. The fluctuating component of the density field and 1/ρ is then

determined using the spectral filtering method described in Sec. 4.4.

The mean value of DSC as a function of height through the mixing layer is shown in Fig.

19(a) for the M = 1.6 case and in Fig. 19(b) for the M = 2.2 case. Results were obtained

similarly to spanwise-averaged profiles, where individual DSC profiles were calculated and

scaled by the h5−95 height. Ensemble averaging the 20 DSC measurements from individual

experiments allowed for a mean value at every post-shock time at each Mach number to be

obtained. This averaging technique is shown in Fig. 19(c), where the colored lines show
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(a) (b) (c)

(d) (e)

Figure 19: Average density self-correlation measurements for the (a) M = 1.6 case, and
(b) M = 2.2 case. Example of ensamble averaging over 20 experiments to obtain mean b
measurements shown in (c), where colored lines show data from individual experiments and
the black line shows the campaign average. Details of the ξ field showing evidence of mixing
differences at the latest post-shock time for the (d) low Mach number, and (e) high Mach
number cases.

density self-correlation measurements for individual experiments, while the thick black line

shows the average DSC profile for that post-shock time.

Measurements of the DSC through the mixing layer for the low Mach number case show

general growth in time, indicating that the fluid is less mixed at later times. This is likely the

result of large spikes and bubbles carrying unmixed fluid into the mixing layer. However, for

the high Mach number case, DSC measurements show growth through PS2, before decaying

at PS3 and PS4. The turn-around in the DSC trend for the M = 2.2 case is caused by the

increased mixing and breakdown to smaller scales associated with a transition to turbulence.

This difference in the behavior of the DSC between the low and high Mach number cases can
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be better understood by a comparison of the ξ (and ultimately ρ) fields at the latest post-shock

time. Figure 19(d) shows a bubble and spike that has developed at PS4 for the M = 1.6

case, showing the largely unmixed fluid penetrating the mixing layer leading to an increase in

DSC. Conversely, Fig. 19(e) shows a similar feature for the M = 2.2 case, where the spike

and bubble have smaller-scale features and increased mixing (more gray regions within the

mixing layer) relative to the low Mach number case, leading to a reduction of the DSC mixing

measurement at late times. This evidence of transition to turbulence occuring by PS2 for the

M = 2.2 case is further supported by Reynolds number measurements discussed in Sec. 5.8.

5.5 Scalar Dissipation Rate

In order to make sense of the spatial properties of mixing structures and the rate at which

mixing is occuring within the mixing layer, the dissipation rate (χ) is explored in this section.

The dissipation rate is an important factor governing mixing and is defined by

χ = D∇ξ ·∇ξ , (5.12)

where the diffusion coefficient D = 1.5×10−5 m2/s for the gas pair used in the current studies.

This dissipation rate is calculated for every experiment, and representative results for χ at each

post-shock time are shown overlaid on the corresponding concentration field in Fig. 20.

The dissipation rate fields from the first post-shock time for both Mach numbers show

long features that stretch horizontally across the image. Larger values for χ are found at the

bottom boundary of the mixing layer when compared with values at the top boundary, and a

greater dissipation rate appears to occur on the left side of the interface, near the horizontal

gas injection site used to create the shear layer initial condition. These horizontally-oriented
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Figure 20: Representative dissipation fields, χ, overlaid on the mole fraction field, ξ. From
top to bottom: PS1, PS2, PS3, PS4. Left column is M = 1.6, right column is M = 2.2.



63

Figure 21: Average dissipation rate (χ) in time for the low (blue) and high (red) Mach number
cases.

features seen at PS1 begin to gain some vertical height in sucessive post-shock times as spike

and bubble features begin to appear and the mixing layer starts its growth. By the latest times,

the dissipation structures do not appear to have an obvious preferred direction, and appear

somewhat chaotic with a large curvature. It should also be noted that the greater dissipation

rate originally occuring on the left side of the interface at early times is not preserved at later

times, when the largest χ values are found scattered throughout the mixing layer.

The mean dissipation rate in the 0.05 < 〈ξ〉 < 0.95 region (χ) is reported as a function of

time in Fig. 21, with the time nondimensionalized using Eq. 5.4. The mean dissipation rate

increases rapidly at early post-shock times (with a more rapid increase for the higher Mach

number case) before the growth slows at later times. This growth continues through all post-

shock times for the low M case, while M = 2.2 results show growth through PS3, before a

slight decay in average dissipation rate for PS4. This trend in χ makes physical sense when

other metrics of the mixing layer are considered. Since large, unmixed spikes and bubbles are

known to penetrate the mixing layer at late times in the M = 1.6 experiments, this brings pure
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(a) (b)

Figure 22: PDFs of the dissipation rate for the initial condition and four post-shock times for
the (a) M = 1.6 case and (b) M = 2.2 case.

light gas in contact with pure heavy gas, where a larger dissipation rate is expected. However,

for the higher Mach number case, this interpenetration of gas is shown to be accompanied by

a breakdown to smaller scales and mixing. This mixing that occurs between the pure light and

pure heavy gases ultimately slows the rate a which dissipation occurs, leading to the decrease

in χ seen at PS4 for the M = 2.2 case. Results shown in Fig. 21 follow a trend similar to

results from Weber [79], although the χ values found in the present work are smaller at later

times and do not show as large a decay between latest times for the M = 2.2 case.

PDFs of the log10 of dissipation rate scaled by its mean value are shown in Fig. 22. While

the left side of the PDFs show good agreement between all times, the right side of the PDFs

(corresponding to larger dissipation rates), shows that there is both greater spread and larger

values of the dissipation rate occuring after shock acceleration within the mixing layer. For

the low Mach number case, a larger portion of the mixing layer contains a greater dissipation

rate at each successive time as the right leg of the PDF pushes rightward in time. For this low

M case, the last three PS times show very good agreement, while the right leg of this PDF

begins to move inward at the latest time for the higher M case. This move toward smaller
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dissipation rates at PS4 agrees well with the drop in χ seen at the latest times seen in Fig. 21

for the M = 2.2 case.

5.6 Energy Spectra

The scale-dependence of concentration and velocity fluctuations is reported here using one-

dimensional energy spectra. This approach has been applied previously for variable density

turbulence in the Rayleigh-Taylor instability [21, 86, 62, 55, 9], as well as shocked gas-curtain

experiments [78, 77] and shear layer interface experiments [85], which have reported the exis-

tence of a k−5/3 inertial range. These experiments showing a k−5/3 scaling in the inertial range

are corroborated by simulations [51, 36, 70], while other simulations found k−3/2 to fit better

at late times [74], and others still found turbulence spectra that did not scale well with either

k−5/3 or k−3/2 [14, 34]. Zhou [91] has suggested that the spectrum of RMI turbulence should

scale as k−3/2 in the inertial range before reducing to the classical Kolmogorov k−5/3 scaling at

late times.

One-dimensional scalar variance energy spectra, Eξ(kx), are computed in the self-similar

(horizontal) direction within the region 0.05 < 〈ξ〉 < 0.95, and results are averaged over rows

from all 20 experiments at each post-shock time. To reduce the influence of camera noise

and extend the spectrum at the highest wavenumbers, an interlacing technique is used [40, 85]

where the Fourier coefficient, F(ξ(x)), is multiplied by the complex conjugate of the Fourier

coefficient of the adjacent row,

Eξ(kx) ≈ F(ξ j(x))F∗(ξ j+1(x)) . (5.13)

This averaged, interlaced scalar variance energy spectrum is shown in Figs. 23(a) and 23(b)

for the low and high Mach number case, respectively. All spectra have been normalized by
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(a) (b)

(c) (d)

(e)

Figure 23: Comparison of spectra showing evolution of relative energy. (a) Scalar variance
energy spectra for M = 1.6 case, (b) Scalar variance energy spectra for M = 2.2 case, (c) TKE
spectra for M = 1.6 case, (d) TKE spectra for M = 2.2 case, and (e) comparison of spectra at
latest time.
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their peak value for a better comparison of relative energy distribution in time. While spectra

appear to tend toward a k−5/3 inertial range by the latest time for both Mach numbers, this

slope is only achieved at the lowest wavenumbers near kx ' 100 before dropping off at higher

wavenumbers. Comparison of Figs. 23(a) and 23(b) show that, for the high Mach number

case, spectra approach their late-time form slightly more quickly than for the low Mach num-

ber case.

A similar approach was taken to obtain the turbulent kinetic energy (TKE) spectra. Since

only two components of velocity were measured, we will refer to these spectra as planar TKE.

Because these flows are variable density, it is required to consider both density and velocity

when calculating TKE. As with the scalar variance energy spectra, the planar TKE spectrum

is calculated using the interlacing method,

T KE(kx) ≈ F(K j(x))F∗(K j+1(x)) , (5.14)

where K is the density-weighted planar turbulent kinetic energy defined using the global ve-

locity fluctuations,

K =
ρ

2
[û2 + ŵ2] . (5.15)

These energy spectra have also been normalized by their peak value, and results are shown

in Figs. 23(c) and 23(d) for the low and high Mach number case, respectively. Planar TKE

spectra show the clear development of a k−5/3 inertial range which spans over roughly a decade

of wavenumber space. We also note a monotonic increase in relative energy at small scales in

time, with a more rapid increase occuring for the M = 2.2 experiments. Comparison of the

spectra at the latest time is shown in Fig. 23(e), and late-time planar TKE spectra show slightly

higher energy at larger wavenumbers, whereas scalar variance spectra show good agreement

for both the low and high Mach number cases.
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Figure 24: Directional turbulent mass-flux velocity measurements across the mixing layer for
each post-shock time. Left column is M = 1.6 case, while right is M = 2.2. Top row is
turbulent mass-flux velocity in the transverse direction, and bottom row is in the streamwise
direction.

5.7 Reynolds Stresses

Turbulent mass-flux velocity (TMFV) is a primary turbulent source term for mixing, and it ap-

pears as a prefactor in the production term for the turbulent kinetic energy evolution equation.

Here the density-weighted TMFV is studied, which is defined as

ai =
〈ρ′u′i〉
〈ρ〉

, (5.16)

where the brackets denote spanwise averaging, primes indicate fluctuations determined using

the spectral method in Sec. 4.4, the index i denotes the direction (such that for the streamwise
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TMFV the w′ field is used, while u′ is used to calculate the transverse TMFV), and Eq. (5.11)

was used to calculate density from the measured concentration fields. Figure 24 shows how

directional TMFV varies across the height of the interface for the initial condition and at each

post-shock time for the low and high Mach number cases. Here, a subscript of 1 corresponds

to the transverse direction (x) while a subscript of 2 corresponds to the streamwise direction

(z). We see from Fig. 24 that transverse turbulent mass-flux velocity is generally positive

above the interface midpoint and becomes negative below the interface midpoint, while the

streamwise turbulent mass-flux velocity is generally negative above the interface and positive

below it. The spanwise-averaged streamwise TMF velocity shows that turbulent mass flux

is upward at the top of the mixing zone and downward below it, indicating that the mixing

zone is growing; however, the values of TMF velocity decay in time, indicating that this

growth should be slowing down as time progresses. This “slowing growth” of the interface

is consistent with the interface thickness measurements of Sec. 5.3. Outside of the turbulent

mixing zone, the TMF velocities tend towards zero both above and below the interface in each

direction. We also note slightly larger values of turbulent mass-flux velocity in both directions

for the high Mach number case, indicating greater production of turbulent kinetic energy due

to the larger velocities imparted by the stronger shock.

Turbulent mass-flux velocity measurements can also be used in calculating Reynolds stresses

in the flow. Reynolds stresses are the mean forces per unit area imposed on the mean flow by

the turbulent fluctuations, and they are defined by

Ri j = 〈ρu′′i u′′j 〉 = 〈ρ〉〈u′iu
′
j〉 − 〈ρ〉aia j + 〈ρ′u′iu

′
j〉, (5.17)

where double primes denote Favre-averaged velocity fluctuations. The present work will ex-

plore each of the three terms on the right hand side of Eq. (5.17) individually, as well as the
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Figure 25: Reynolds stress measurements at the initial condition. (a) Comparison of terms
in equation 5.17 for the transverse component of Reynolds stress. (b) The three measured
components of the Reynolds stress across the mixing layer.
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three (of six) components of Reynolds stress that have been obtained directly through simulta-

neous measurements of concentration and velocity. Representative results for each of the three

terms on the right-hand side of the streamwise Reynolds stress component in equation 5.17

are shown individually for the initial condition in figure 25(a). Term 1 is the mean density-

velocity correlation, and is clearly the dominant term. Term 2 is the the mass flux term and is

roughly 250 × smaller than term 1. Term 3 is the triple correlation term, which is shown to

be roughly an order of magnitude smaller than the mean density-velocity correlation term. A

similar trend in the importance of term 1 over the other two terms has been seen previously by

[5] and [31]. The effect of the shear jet used in creating the initial condition is clearly visible

in the mass flux and triple correlation terms, where the large velocity fluctuations within the

jet region dominate the stresses near the z/h5−95 = −0.4 height.

In addition to viewing individual terms of the Reynolds stress components, the value of

the components themselves can be compared as a function of position across the turbulent

mixing zone; this is shown for the initial condition in figure 25(b). A comparison of the three

measured components of the Reynolds stress tensor shows that the transverse and streamwise

components remain positive throughout the mixing zone, and each shows a tendency toward

zero value away from the interface, indicating the greatest forces from turbulent fluctuations

are occurring near the center of the mixing zone. The transverse component (R11) is shown

to dominate at the initial condition due to the horizontal motion of the shear layer interface.

Finally, the cross term remains near zero throughout much of the mixing layer, with generally

negative values in the lower portion of the layer and generally positive values in the top portion.

It should be noted that these direct measurements can also be used to help constrain and

validate turbulence models.
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Figure 26: The three measured components of the Reynolds stress across the mixing layer for
the M = 1.6 case (left) and the M = 2.2 case (right). From top to bottom: transverse stresses,
streamwise stresses, cross-term stresses.
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The evolution of each component of the Reynolds stresses is shown in Fig. 26. A com-

parison of the three measured components of the Reynolds stress tensor shows that, following

passage of the shock wave, the streamwise component (R22) is dominant. At early times the

interface exhibits a tendency towards zero value away from the mixing zone, indicating the

greatest forces from turbulent fluctuations are occurring near the center of the mixing zone.

However, as time progresses, a decay in Reynolds stress is seen at the center of the mixing

layer, while stresses near the top of the layer begin to grow. This same trend is seen for the

transverse Reynolds stresses. This bias for growth in Reii at the top of the mixing layer is

likely related to the increase seen in PDFs of ξ near ξ = 1, which is attributed to the greater

inertia of the heavy fluid. In other words, more mixing is occuring near the top of the mixing

layer, and with this mixing come increased Reynolds stresses. Finally, the cross term decays

toward zero throughout much of the mixing layer, with generally positive values in the top

portion of the layer and generally negative values in the lower portion.

5.8 Reynolds Number

The Reynolds number is a ratio of inertial forces to viscous forces, and can be calculated

by dividing the product of a characteristic length scale and flow velocity by the kinematic

viscosity of the flow. For the Taylor Reynolds number, the characteristic length scale is chosen

to be the Taylor microscale such that

Reλ =
urmsλT

ν
, (5.18)

where urms =
√
〈u′2〉 is the root-mean-square velocity using local velocity fluctuations in the

self-similar (transverse) direction, λT is the Taylor microscale, and ν is the kinematic viscosity.
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(a) (b)

Figure 27: Representative measurements using each of the two methods employed to calculate
the Taylor microscale. Results shown for (a) the autocorrelation method, where λT is deter-
mined by the r-intercept of the osculating parabola fit to the autocorrelation curve, and (b) the
variance method, where the peak of the distribution fit defines λT .

To understand the time evolution of the Taylor Reynolds number in the current experiments,

we will first look closer into determining the values λT and ν.

The Taylor microscale is the length scale at which viscosity will begin to significantly

affect the flow, and it is found here using two methods. In the first, the Taylor microscale is

defined based on the curvature of the velocity autocorrelation. The velocity autocorrelation,

R (r) =
〈û (x) û (x + r)〉〈

(û)2〉 , (5.19)

is an even function, and is therefore symmetric such that R(−r) = R(r). As such, the first terms

in the Taylor series are

R (r) =1 +
1
2

d2R(0)
dr2 r2 (5.20)

=1 −
r2

λ2
T

. (5.21)

As done by many others [13, 62, 58, 85], the Taylor microscale can then be calculated directly
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from the curvature of the autocorrelation,

λT =

[
−

1
2

d2R(0)
dr2

]−1/2

. (5.22)

The osculating parabola is fit using the central seven points of the autocorrelation; that is the

central r = 0 point, the adjacent three points, and the corresponding three points on the −r side

of the correlation. This is performed for both the streamwise and transverse velocity, such that

directional λT,i are found, and a nominal Taylor microscale is calculated by λT =
√
λ2

T,x + λ2
T,z.

The directional Taylor microscales using this method are shown in Fig. 27(a), where the

autocorrelations are the solid lines, the osculating parabolas are the dashed lines, and the

directional Taylor microscales are determined by the r-intercepts of the dashed lines.

Equivalently, the Taylor microscale can be calculated from the variance and the first-

derivative,

λT,x =


2
〈
(û)2

〉
〈(
∂û
∂x

)2〉


1/2

, λT,z =


2
〈
(ŵ)2

〉
〈(
∂ŵ
∂z

)2〉


1/2

. (5.23)

This method is shown in Fig. 27(b), where the peak of the distribution fit defines the directional

Taylor microscale. Again, this is calculated in each direction and a single value for the Taylor

microscale is determined from the square root of the sum of the squares. Results using the

autocorrelation method and the variance method are then averaged to give a representative

λT measurement at the initial condition and at each post-shock time; the evolution of this

representative λT is shown in nondimensional time for the two Mach numbers in Fig. 28.

The representative Taylor scale is shown to be roughly 7 mm for the initial condition shear-

layer flow. Following shock acceleration of the interface, the Taylor scale is shown to decrease

rapidly for both Mach number cases. This decrease continues to give a value λT ' 2.6 mm

at PS2 for both cases, though this decrease in λT occurs slightly faster for the higher M case.
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Figure 28: Taylor scale measurements as a function of time for the low and high Mach number
cases.

While the M = 2.2 experiments show an increase in the Taylor microscale following PS2, low

M results indicate a continued decrease in λT through PS3 before increasing only at the latest

post-shock time. By PS4, the low M Taylor microscale has reached a value just above 3 mm,

while the λT determined from the high M experiments lies just below 3 mm. It should be noted

that this method of determining λT was also carried out using the scalar field data (similarly

to [85]), and results using velocity yielded λT measurements about 50% those founding using

ξ-field measurements.

The final value needed to determine the Taylor Reynolds number is the kinematic viscosity,

ν. The kinematic viscosity is computed as ν(ξ) = µmix/(ρ
†

2 + (ρ‡1 − ρ
†

2)ξ) and the dynamic

viscosity is averaged from the viscosities of each species, weighted by its mole fraction and

molecular weight [67, 85],

µmix =

∑
i µiξi

√
MWi∑

i ξi
√

MWi
. (5.24)

Since the average mole fraction within the mixing layer is ξ ∼ 0.5, ν(ξ) is evaluated at this
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Figure 29: Taylor Reynolds number (dashed) and outer-scale Reynolds number (solid) as a
function of time. The gray band indicates the threshold for turbulent mixing [28].

value, giving 1.6×10−5 m2/s.

With values determined for each term in the Taylor Reynolds number equation, Reλ can

now be determined at each time in the development of the instability using Eq. (5.18). The

Taylor Reynolds number is shown in Fig. 29 for the low and high Mach number cases as the

dotted blue and red lines, respectively. Results show a rapid increase in Reλ following passage

of the shock wave, with a larger increase in Reynolds number for the high Mach number case.

With Reλ determined for each post-shock time, an estimate of the outer-scale Reynolds number

can also be found using the relation Re = (3/20)Re2
λ, which holds for isotropic turbulence [59].

Outer-scale Reynolds number results are shown also in Fig. 29 as solid lines. By showing the

turbulent transition zone shaded in gray [28], we note that the flow just barely passes through

this zone by PS4 for the low Mach number case; however, the flow is passed this transition

zone by PS2 for the high Mach number case. This is consistent with earlier findings in this

report indicating a transition to turbulence occuring near PS2 for the M = 2.2 case, such as

DSC profile measurements and streamwise global velocity fluctuation distributions.
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Chapter 6

Conclusions

Simultaneous PIV and PLIF experiments were conducted in the Wisconsin Shock Tube Lab-

oratory to obtain concurrent, full-field concentration and velocity field measurements of a

shock-accelerated shear layer interface. PLIF images were corrected to account for the nonuni-

form laser profile, laser sheet divergence, and Beer’s law attenuation to show mole frac-

tion, while PIV particle image pairs gave corresponding velocity fields. Velocity fields were

matched to concentration results using a field-matching technique requiring the use of target

images obtained with each camera prior to every experiment. Once the post-shock fields had

been matched to the same coordinate system, a spectral method was used to decompose the

flow into mean and fluctuating components.

The RMI mixing layer measurements obtained in this study allowed, for the first time in

this regime, calculations of turbulence quantities giving insight into the development of turbu-

lence in a shock-accelerated mixing layer. Results showed evidence of power-law growth of

the mixing layer, as ~ ∝ τ0.34 after adjusting the interface to remove height added from large

scale features. A comparison of mixing layer thickness definitions has shown that integral

measurements are proportional to threshold measurements of thickness. Evidence of a transi-

tion to turbulence occuring by the latest time for the low Mach number case, but as early as

PS2 for the high Mach number case was first seen by calculating the density self-correlation

across the mixing layer.
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Transverse velocity fields show the break-up of the rightward-going jet used to establish

the initial condition shear layer, while streamwise velocity fields show the amplification of

alternating upward and downward-traveling gas, which develops into spike and bubble struc-

tures at late times. We find that turbulent mass-flux velocities show very different behavior

depending on the direction considered, and vary greatly depending on position across the tur-

bulent mixing zone. TMF velocities were also shown to be larger in magnitude by the latest

time when accelerated by a stronger shock, indicating a greater production of turbulent kinetic

energy, as well as a tendency towards zero value outside of the mixing layer. Reynolds stress

calculations showed that the mean density-velocity correlation term is of greatest importance

when determining the mean forces per unit area imposed on the mean flow by the turbulent

fluctuations, which is in agreement with results from previous work. The streamwise compo-

nent of the Reynolds stress was shown to be dominant and have the largest values in the center

of the mixing zone.

Spanwise-averaged profiles of the concentration field were matched at the ξ = 0.5 level and

showed a steepening in time, likely due to the penetration of pure light-gas bubbles and heavy

argon spikes. Profiles of the global transverse velocity fluctuations showed the compression

of the rightward-going jet used to create the IC interface, with greater compression occuring

for the high M case, while profiles of the global streamwise velocity fluctuations showed ever-

increasing downward velocity above the interface and upward velocity below the interface.

This is consistent with gas below the interface pushing upward through the interface with the

development of spikes, and gas above the interface moving downward as bubbles form at late

times.

Planar TKE spectra included density effects and showed a tendency toward a k−5/3 slope in

the inertial range (covering a much larger region of wavenumber space than seen for the scalar
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variance energy spectra), and a more rapid movement toward this final state for the higher

Mach number case. A monotonic increase in relative energy was seen at the small scales, and

acceleration by a stronger shock has also been shown to increase the relative amount of energy

transferred to the small scales by the latest times. The Taylor microscale was calculated using

two methods, and was used to determine the Taylor Reynolds number for the flow. Outer-

scale Reynolds numbers were obtained from Taylor Reynolds numbers at each time in the

development of the instability, and provided further evidence of a transition to turbulence

occuring by PS4 for the low Mach number experiments, and by as early as PS2 for the high

Mach number case.



81

Bibliography

[1] M. H. Anderson, B. P. Puranik, J. G. Oakley, P. W. Brooks, and R. Bonazza, Shock tube

investigation of hydrodynamic issues related to inertial confinement fusion, Shock Waves

10 (2000), 377–387.

[2] D. Arnett, The role of mixing in astrophysics, Astrophys J. Suppl. Ser. 127 (2000), no. 2,

213–217.

[3] X. S. Asay-Davis, P. S. Marcus, M. H. Wong, and I. dePater, Jupiter’s shrinking great red

spot and steady oval ba: Velocity measurements with the ‘advection corrected correla-

tion image velocimetry’ automated cloud-tracking method, Icarus 203 (2009), 164–188.

[4] R. Aure and J. W. Jacobs, Particle image velocimetry study of the shock-induced single

mode richtmyer–meshkov instability, Shock Waves 18 (2008), 161–167.

[5] B. J. Balakumar, G. C. Orlicz, J. R. Ristorcelli, S. Balasubramanian, K. P. Prestridge,

and C. D. Tomkins, Turbulent mixing in a richtmyer–meshkov fluid layer after reshock:

velocity and density statistics, J. Fluid Mech. 696 (2012), 67–93.

[6] B. J. Balakumar, G. C. Orlicz, C. D. Tomkins, and K. P. Prestridge, Simultane-

ous particle-image velocimetry–planar laser-induced fluorescence measurements of

richtmyer-meshkov instability growth in a gas curtain with and without reshock, Physics

of Fluids 20:124103 (2008).

[7] S. Balasubramanian, G. C. Orlicz, K. P. Prestridge, and B. J. Balakumar, Experimental



82

study of initial condition dependence on richtmyer-meshkov instability in the presence of

reshock, Physics of Fluids 24 (2012), 034103.

[8] G. J. Ball and R. A. East, Shock and blast attenuation by aqueous foam barriers: influ-

ence of barrier geometry, Shock Waves 9 (1999), 37–47.

[9] A. Banerjee, W. N. Kraft, and M. J. Andrews, Detailed measurements of a statistically

steady Rayleigh—Taylor mixing layer from small to high atwood numbers, J. Fluid Mech.

659 (2010), 127–190.

[10] R. Bonazza and B. Sturtevant, X-ray measurements of growth rates at a gas interface

accelerated by shock waves, Phys. Fluids 8 (1996), no. 9, 2496–2512.

[11] M. Brouillette and B. Sturtevant, Experiments on the Richtmyer-Meshkov instability:

Small-scale perturbations on a plane interface, Phys. Fluids A 5 (1993), no. 4, 916—

930.

[12] G. L Brown and A. Roshko, On density effects and large structure in turbulent mixing

layers, J. Fluid Mech. 64 (1974), no. 04, 775–816.

[13] F. H. Champagne, V. G. Harris, and S. Corrsin, Experiments on nearly homogeneous

turbulent shear flow, J. Fluid Mech. 41 (1970), no. 01, 81.

[14] R. H. Cohen, W. P. Dannevik, A. M. Dimits, D. E. Eliason, A. A. Mirin, Y. Zhou, D. H.

Porter, and Paul R. Woodward, Three-dimensional simulation of a Richtmyer—Meshkov

instability with a two-scale initial perturbation, Phys. Fluids 14 (2002), no. 10, 3692.

[15] B. D. Collins and J. W. Jacobs, Plif flow visualization and measurements of the



83

richtmyer–meshkov instability of an air/sf6 interface, J. Fluid Mech. 464 (2002), 113–

136.

[16] B. D. Collins and J. W. Jacobs, PLIF flow visualization and measurements of the

Richtmyer–Meshkov instability of an air/SF6 interface, J. Fluid Mech. 464 (2002), 113–

136.

[17] T. J. B. Collins, A. Poludnenko, A. Cunningham, and A. Frank, Shock propagation in

deuterium-tritium-saturated foam, Phys. Plasmas 12 (2005), no. 062705.

[18] A. W. Cook, Artificial fluid properties for large-eddy simulation of compressible turbu-

lent mixing, Physics of Fluids 19:055103 (2007).

[19] A. W. Cook, W. Cabot, and P. L. Miller, The mixing transition in Rayleigh–Taylor insta-

bility, J. Fluid Mech. 511 (2004), 333–362.

[20] A. W. Cook and P. E. Dimotakis, Transition stages of Rayleigh–Taylor instability be-

tween miscible fluids, J. Fluid Mech. 443 (2001), 69–99.

[21] S. B. Dalziel, P. F. Linden, and D. L. Youngs, Self-similarity and internal structure of

turbulence induced by Rayleigh—Taylor instability, J. Fluid Mech. 399 (1999), 1–48.

[22] B. A. Davy and D. T. Blackstock, Measurements of the refraction and diffraction of a

short n wave by a gas-filled soap bubble, J. Acoust. Soc. Am. 49 (1971), no. 3, 732–737.

[23] C. F. Delale, S. Nas, and G. Tryggvason, Direct numerical simulations of shock propa-

gation in bubbly liquids, Physics of Fluids 17 (2005), no. 121705.

[24] M. Delius, F. Ueberle, and W. Eisenmenger, Extracorporeal shock waves act by shock

wave-gas bubble interaction, Ultrasound in Med. and Biol. 24 (1998), no. 7, 1055–1059.



84

[25] G. Dimonte and M. Schneider, Turbulent Richtmyer-Meshkov instability experiments

with strong radiatively driven shocks, Phys. Plasmas 4 (1997), no. 12, 4347–4357.

[26] , Density ratio dependence of Rayleigh–Taylor mixing for sustained and impul-

sive acceleration histories, Phys. Fluids 12 (2000), 304.

[27] P. E. Dimotakis, The mixing transition in turbulent flows, J. Fluid Mech. 409 (2000),

69–98.

[28] P. E. Dimotakis, The mixing transition in turbulent flows, J. Fluid Mech. 409 (2000),

69–98.

[29] W. Eisenmenger, The mechanisms of stone fragmentation in eswl, Ultrasound in Med.

and Biol. 27 (2001), no. 5, 683–693.

[30] A. Abakumov et al., Studies of film effects on the turbulent mixing zone evolution in

shock tube experiments, Proceedings of the fifth international workshop on compressible

turbulent mixing (1996).

[31] S. Gerashchenko and K. P. Prestridge, Density and velocity statistics in variable density

turbulent mixing, Journal of Turbulence 16 (2015), 1011–1035.

[32] S. M. Gracewski, G. Dahake, Z. Ding, S. J. Burns, and E. C. Bach, Internal stress wave

measurements in solid subjected to lithotripter pulses, J. Acoust. Soc. Am. 94 (1993),

652–661.

[33] F. F. Grinstein, Coarse grained simulation and turbulent mixing, Cambridge: Cambridge

University Press, 2016.



85

[34] F. F. Grinstein, A. A. Gowardhan, and A. J. Wachtor, Simulations of Richtmyer—

Meshkov instabilities in planar shock-tube experiments, Phys. Fluids 23 (2011), no. 3,

034106.

[35] D. M. Heim, D. Jesch, and J. B. Ghandhi, Size-scaling effect on the velocity field of an

internal combustion engine, part ii: Turbulence characteristics, International Journal of

Engine Research 15 (2014), no. 2, 193–208.

[36] D. J. Hill, C. Pantano, and D. I. Pullin, Large-eddy simulation and multiscale modelling

of a Richtmyer—Meshkov instability with reshock, J. Fluid Mech. 557 (2006), 29–61.

[37] J. W. Jacobs and V. V. Krivets, Experiments on the late-time development of single-mode

richtmyer–meshkov instability, Physics of Fluids (2005).

[38] J. W. Jacobs, V. V. Krivets, V. Tsiklashvili, and O. A. Likhachev, Experiments on the

Richtmyer–Meshkov instability with an imposed, random initial perturbation, Shock

Waves 23 (2013), no. 4, 407–413.

[39] M. A. Jones and J. W. Jacobs, A membraneless experiment for the study of richtmyer–

meshkov instability of a shock- accelerated gas interface, Physics of Fluids 9 (1997),

3078–3085.

[40] S. A. Kaiser and J. H. Frank, Imaging of dissipative structures in the near field of a

turbulent non-premixed jet flame, P. Combust. Inst. 31 (2007), no. 1, 1515–1523.

[41] L. Houas L and I. Chemouni, Experimental investigation of richtmyer–meshkov instabil-

ity in shock tube, Physics of Fluids (1996).



86

[42] D. Oron G. Erez L. Levin D. Shvarts L. Erez, O. Sadot and G. Ben-Dor, Study of the

membrane effect on turbulent mixing measurements in shock tubes, Shock Waves 10

(2000), 241–251.

[43] E. Leinov, G. Malamud, Y. Elbaz, L. A Levin, G. Ben-Dor, D. Shvarts, and O. Sadot,

Experimental and numerical investigation of the Richtmyer-Meshkov instability under

re-shock conditions, J. Fluid Mech. 626 (2009), 449–475.

[44] D. Livescu and J. R. Ristorcelli, Variable-density mixing in buoyancy-driven turbulence,

J. Fluid Mech. 605 (2008), 145–180.

[45] F. E. Marble, E. E. Zukoski, J. W. Jacobs, G. J. Hendricks, and I. A. Waitz, Shock en-

hancement and control of hypersonic mixing and combustion, 26th AIAA, SAE, ASME,

and ASEE, Joint Propulsion Conference, Orlando, FL, July 16-18 (1990).

[46] J. McFarland, D. Reilly, S. Creel, C. McDonald, T. Finn, and D. Ranjan, Experimental in-

vestigation of inclined interface richtmyer-meshkov instability before and after reshock,

Experiments in Fluids 55 (2014).

[47] J. P. Mellado, S. Sarkar, and Y. Zhou, Large–eddy simulation of rayleigh–taylor turbu-

lence with compressible miscible fluids, Physics of Fluids 17 (2005).

[48] E. E. Meshkov, Instability of a shock wave accelerated interface between two gases,

NASA Technical Translation 13 (1970), 1–14.

[49] E. E. Meshkov, Instability of the interface of two gases accelerated by a shock wave,

Fluid Dyn 4 (1972), 101–104.



87

[50] K. Mikaelian, Turbulent mixing generated by Rayleigh–Taylor and Richtmyer-Meshkov

instabilities, Physica D 36 (1989), 343–357.

[51] A. R. Miles, B. Blue, M. J. Edwards, J. A. Greenough, J. F. Hansen, H. F. Robey, R. P.

Drake, C. Kuranz, and D. R. Leibrandt, Transition to turbulence and effect of initial con-

ditions on three-dimensional compressible mixing in planar blast-wave-driven systems,

Phys. Plasmas 12 (2005), no. 5, 056317.

[52] R. V. Morgan, R. Aure, J. D. Stockero, J. Greenough, W. Cabot, O. A. Likhachev, and

J. W. Jacobs, On the late-time growth of the two-dimensional richtmyer–meshkov insta-

bility in shock tube experiments, J. Fluid Mech. 712 (2012), 354–383.

[53] B. J. Motl, Experimental parameter study of the richtmyer-meshkov instability, Ph.D.

thesis, University of Wisconsin-Madison, 2008.

[54] B. J. Motl, J. G. Oakley, D. Ranjan, C. Weber, M. Anderson, and R. Bonazza, Experi-

mental validation of a richtmyer–meshkov scaling law over large density ratio and shock

strength ranges, Physics of Fluids 21 (2009), 126102.

[55] N. J. Mueschke, M. J. Andrews, and O. Schilling, Experimental characterization of

initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh—

Taylor mixing layer, J. Fluid Mech. 567 (2006), 27.

[56] T. Mullin, Turbulent times for fluids, New Scientist 124 (1989).

[57] G. C. Orlicz, S. Balasubramanian, and K. P. Prestridge, Incident shock mach number

effects on richtmyer-meshkov mixing in a heavy gas layer, Physics of Fluids 25 (2013),

114101.



88

[58] B. Petersen and J. Ghandhi, High-resolution turbulent scalar field measurements in an

optically accessible internal combustion engine, Exp. Fluids 51 (2011), 1695–1708.

[59] S. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000.

[60] J. K. Prasad, A. Rasheed, S. Kumar, and B. Sturtevant, The late-time development of the

Richtmyer–Meshkov instability, Phys. Fluids 12 (2000), no. 8, 2108–2115.

[61] K. P. Prestridge, P. M. Rightley, P. Vorobieff, R. F. Benjamin, and N. A. Kurnit, Simulta-

neous density-field visualization and piv of a shock-accelerated gas curtain, Experiments

in Fluids 29 (2000), 339–346.

[62] P. Ramaprabhu and M. J. Andrews, Experimental investigation of Rayleigh–Taylor mix-

ing at small atwood numbers, J. Fluid Mech. 502 (2004), 233–271.

[63] D. Ranjan, Experimental investigation of the shock-induced distortion of a spherical gas

inhomogeneity, Ph.D. thesis, University of Wisconsin-Madison, 2008.

[64] L. Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy

fluid of variable density, P Lond. Math. Soc. 14 (1883), no. 1, 170–177.

[65] K. I Read, Experimental investigation of turbulent mixing by Rayleigh–Taylor instability,

Physica D 12 (1984), no. 1-3, 45–58.

[66] D. Reese and C. Weber, Numerical investigation of 3d effects on a 2d-dominated shocked

mixing layer, Physics of Fluids 28 (2016), no. 114102.

[67] R. C. Reid, J. M. Prausnitz, and B. E. Poling, The properties of gases and liquids, Mc-

Graw Hill Book Co., New York, NY, 1987.



89

[68] L.F. Richardson, Weather prediction by numerical process, University Press, 1922.

[69] R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Com-

mun. Pure Appl. Math. 13 (1960), no. 2, 297–319.

[70] O. Schilling and M. Latini, High-order WENO simulations of three-dimensional

reshocked Richtmyer—Meshkov instability to late times: dynamics, dependence on ini-

tial conditions, and comparisons to experimental data, Acta Math. Sci. 30 (2010), no. 2,

595–620.

[71] A.E. Siegman, MW Sasnett, and TF Johnston Jr, Choice of clip levels for beam width

measurements using knife-edge techniques, Quantum Electronics, IEEE Journal of 27

(1991), no. 4, 1098–1104.

[72] W.T. Silfvast, Laser fundamentals, Cambridge University Press, 2004.

[73] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicu-

lar to their planes. i, P. R. Soc. Lond. 201 (1950), no. 1065, 192–196.

[74] B. Thornber, D. Drikakis, D. L. Youngs, and R. J. R. Williams, The influence of initial

conditions on turbulent mixing due to Richtmyer–Meshkov instability, J. Fluid Mech. 654

(2010), 99–139.

[75] M. Vetter and B. Sturtevant, Experiments on the Richtmyer-Meshkov instability of an

air/SF6 interface, Shock Waves 4 (1995), 247–252.

[76] M. Vetter and B. Sturtevant, Experiments on the richtmyer-meshkov instability of an

air/sf6 interface, Shock Waves 4 (1995), 247–252.



90

[77] P. Vorobieff, N. G. Mohamed, C. Tomkins, C. Goodenough, M. Marr-Lyon, and R. F.

Benjamin, Scaling evolution in shock-induced transition to turbulence, Phys. Rev. E 68

(2003), no. 6, 065301.

[78] P. Vorobieff, P. M Rightley, and R. F Benjamin, Power-law spectra of incipient gas-

curtain turbulence, Phys. Rev. Lett. 81 (1998), 2240–2243.

[79] C. Weber, Turbulent mixing measurements in the richtmyer-meshkov instability, Ph.D.

thesis, University of Wisconsin-Madison, 2012.

[80] C. Weber, A. W. Cook, and R. Bonazza, Growth rate of a shocked mixing layer with

known initial perturbations, J. Fluid Mech. 725 (2013), 372–401.

[81] C. Weber, N. S. Haehn, J. Oakley, D. A. Rothamer, and R. Bonazza, Turbulent mixing

measurements in the richtmyer–meshkov instability, Physics of Fluids 24:074105 (2012).

[82] C. Weber, B. J. Motl, J. G. Oakley, and R. Bonazza, Richtmyer-meshkov parameter study,

Fusion Science and Technology 56 (2009), no. 1, 460–464.

[83] C. R. Weber, Turbulent mixing measurements in the Richtmyer-Meshkov instability,

Ph.D. thesis, University of Wisconsin-Madison, December 2012.

[84] C. R. Weber, A. W. Cook, and R. Bonazza, Growth rate of a shocked mixing layer with

known initial perturbations, J. Fluid Mech. 725 (2013), 372–401.

[85] C. R. Weber, N. Haehn, J. Oakley, D. Rothamer, and R. Bonazza, An experimental inves-

tigation of the turbulent mixing transition in the richtmyer-meshkov instability, J. Fluid

Mech. 748 (2014), 457–487.



91

[86] P. N. Wilson and M. J. Andrews, Spectral measurements of Rayleigh—Taylor mixing at

small atwood number, Phys. Fluids 14 (2002), no. 3, 938.

[87] J. Yang, T. Kubota, and E. E. Zukoski, A model for characterization of a vortex pair

formed by shock passage over a light–gas inhomogeneity, J. Fluid Mech. 258 (1994),

217–244.

[88] D. L. Youngs, Numerical simulation of turbulent mixing by Rayleigh–Taylor instability,

Physica D 12 (1984), no. 1-3, 32–44.

[89] , Modelling turbulent mixing by Rayleigh–Taylor instability, Physica D 37

(1989), 270–287.

[90] , Numerical simulation of mixing by Rayleigh–Taylor and Richtmyer-Meshkov

instabilities, Laser Part. Beams 12 (1994), no. 4, 725–750.

[91] Y. Zhou, A scaling analysis of turbulent flows driven by Rayleigh—Taylor and

Richtmyer—Meshkov instabilities, Phys. Fluids 13 (2001), no. 2, 538.


	Abstract
	Acknowledgements
	Nomenclature
	Introduction
	Background
	The Richtmyer-Meshkov Instability
	Vorticity Deposition
	Perturbation Growth
	Turbulent Mixing

	Motivation
	Previous Work
	Theorical Framework
	Experimental Studies
	Computational Investigations


	Experimental Setup
	The WiSTL Facility
	Initial Condition
	Experimental Configuration
	Experimental Error

	Data Processing
	Concentration from PLIF
	Velocity from PIV
	Field Matching
	Decomposition of Fields

	Results and Discussion
	Field Structure and Distribution
	Spanwise-Averaged Profiles
	Mixing-layer Thickness
	Density Self-correlation
	Scalar Dissipation Rate
	Energy Spectra
	Reynolds Stresses
	Reynolds Number

	Conclusions
	Bibliography

